New System Services Ramping Product

Industry Workshop Jonathan O'Sullivan 31st March 2022

Agenda

- Context of changing power system needs and new challenges
- History of the ramping product
- What is the proposed service and why is it needed?
 - TSOs recommend the introduction of a new ramping service as a Fixed Term contract
- Contractual aspects
- Next steps
- Q&A

Context – Fixed Contracts Process

- Potential new ramping service proposals governed under the Fixed Contract Arrangements process set out in SEM-21-021
- Under the process, TSOs assess the need for targeted procurement of services
- The TSOs' assessment should consider:
 - The technical scarcities on the system;
 - The current volume of services, and the sources of that volume;
 - Any localised system needs; and
 - Any other issues the TSOs consider relevant to the assessment

Context – Fixed Contracts Process (cont'd)

- TSOs will submit assessment to the SEMC with a high-level recommendation whether to initiate a Fixed Contract procurement process
- SEMC will review and may issue a Direction to the TSOs to prepare a detailed proposal for this procurement process
- The TSOs will publish the detailed proposal for public consultation
- The TSOs will submit a Recommendation Paper to the SEMC
- The SEMC following its review will then publish a Decision paper setting out the arrangements for that Fixed Contract procurement

Changing power system needs and new challenges

Overarching Vision

- In large scale investments the best outcomes are when those who are best able to manage the risk are responsible for the risk.
- There are 4 risks outside of the control of investors in electricity oversupply, constraints, curtailment and TLAFs
- If the markets do not explicitly deal with these risks, the outcome is a false economy

Challenges to the System over the Decade

	Reserve – levels sam Probability of ger Probability	ne, but dimensions ch neration portfolio no y of no wind for a per	hanging with techno t meeting demand riod of time	logy _		\rightarrow	Same Low High
	Reserve – levels sam Probability of ger	ne, but dimensions ch neration portfolio no	hanging with techno t meeting demand	logy		\rightarrow	Same Low
	Reserve – levels sam	ne, but dimensions ch	hanging with techno	logy		\rightarrow	Same
r							
	Congestion – re	equires right capabili	ities in right places				High
	Electromagnetism	n – requires inertia ca	pable equipment				Low
R	esource Certainty –	- requires more ramp	capability in system				Low
	R	Resource Certainty – Electromagnetism Congestion – r	Resource Certainty – requires more ramp Electromagnetism – requires inertia ca Congestion – requires right capabili	Resource Certainty – requires more ramp capability in system Electromagnetism – requires inertia capable equipment Congestion – requires right capabilities in right places	Resource Certainty – requires more ramp capability in system Electromagnetism – requires inertia capable equipment Congestion – requires right capabilities in right places	Resource Certainty – requires more ramp capability in system Electromagnetism – requires inertia capable equipment Congestion – requires right capabilities in right places	Resource Certainty – requires more ramp capability in system Electromagnetism – requires inertia capable equipment Congestion – requires right capabilities in right places

Moving through the Operational Stages

SNSP	Stage1	Stage2	Stage3	Stage4	Stage5	Year
0%	100	0	0	0	0	2000
<50%	90	10	0	0	0	2010
50<75%	60	30	10	0	0	2020
75%<100%	10	50	30	10	0	2030
>100%	5	25	30	30	10	2040

Operating Policy - Volumes

Operating Stage	Reserves	Ramping	Electro-magnetism	Adequacy
Stage 1	500 MW (75% LSI)	None	8 -1000, Sys 20000 MWs	Probability of loss of con plant
Stage 2	500 MW (75% LSI)	None	8 -1000, Sys 20000 MWs	Probability of loss of con plant
Stage 3	500 MW (75% LSI) 200 MW FFR	1-3-8	8 -1000, Sys 20000 MWs	Probability of loss of con plant
Stage 4	500 MW (75% LSI) 200 MW FFR	1-3-8-12	8 -1000, Sys 20000 MWs	No wind
Stage 5	500 MW (75% LSI) 200 MW FFR	12	8 -1000, Sys 20000 MWs	No wind

The Impact of Increased RES-E

Investment challenges over the decade

TSO Future Arrangements for System Services (FASS) Recommendation

- Spot market for all system services
- Layered Risk management (CfD) against this spot market
- Market Power/Price Caps set consistently with the value of System Services (€5.8 billion over next decade)
- Arrangements enduring to at least 2040
- Due to progress to date implementation needs to be phased

TSO approach to current difficulties

2020 2021 2022 2023 2024

202? 2027 2028 2029 2030

But need to look at the bigger picture!

The History of the Ramping Product

Background – Operations and DS3

2011 - Ensuring a Secure Sustainable System

Delivering a Secure Sustainable System

- 2011 Programme established
- Meeting the RES Policy Objectives efficiently while maintaining system security
- Holistically considering technical, commercial and regulatory needs of the system

EIRGRID

 Engaging with all industry stakeholders

SONI

Ramping Concept Variability Forecast Error • Demand

- Wind
- Interconnector
- Disp Generation

- Demand
- Wind
- Interconnector
- Disp Generation

Ramping Requirement

Wind Variability (1 hour)

Ramping Requirement

EIRGRID

The Need for Ramping in 2030

Wind Requirement 2020 2030

EIRGRID

Frequency of Large Wind Requirement Downward Ramp

In which Operational Stages is the risk present?

But what about the uncertainty of the Forecast?

So what...?

- There is a demonstrable increased ramp down risk to power system operation for 2030
- There is a need for a longer term ramping product in the order of 12 hour duty, 5 hour horizon and available up to 60% hours of the year
- More analysis needs to be conducted to estimate system risk including demand, solar, interconnectors..

Proposed Ramping Service Design

Installed Capacity – 2010, 2020, 2030

2010

2020

2030

Variable Renewable Generation
Conventional Generation
Interconnector
EIRGRID

Ramping Margin Product

- Product: Margin available with high degree of certainty in [x] hours time and maintained for [y] hours
- Three time horizons and durations
 - 1 hour horizon with 2 hour duration
 - 3 hour horizon with 5 hour duration
 - 8 hour horizon with 8 hour duration
- Payment based on
 - Initial Dispatched Output
 - Ramping Capability
 - Availability in Duration Window

Ramping Margin (RM1, RM3 & RM8)

Ramping Margin (RM1, RM3 & RM8)

Ramping Margin (RM1, RM3 & RM8)

Contractual Aspects

Proposed Type and Duration of Fixed Contracts

- All contractual aspects would be subject to consultation
- Considerations will include:
 - Length of contracts
 - Availability requirements
 - Firm access status
 - Whether there is a locational requirement for the service
 - Payment mechanism
 - Performance Scalars and use of Protocol

Further questions on remuneration

DS3 Approach

- Price Regulated
 - No restrictions
- Qualification

Length of Arrangements

New Ramping Auction

- Volume Regulated
 - Circa 1000 MW of capability
- Auction Winner
 - price for 12 hour ramping per trading period
- 6 years..?

TSO HLD of Spot Market Design

FASS Settlement Market and Physical actions

Proposed Remuneration: Forecast and Performance

Questions on Remuneration

- Location no but Firm Access
- Eligible Technologies
 - no restriction but need to be proven to deliver capability
 - Emissions limits a factor
 - Is SNSP a consideration?
- Consideration may be (for example) to offer product at least 30% hours of the year and be paid for service provision up to 60% of hours a year.

Next Steps

- TSOs to submit assessment to the SEMC with a high-level recommendation
- SEMC will review and may issue a Direction to the TSOs to prepare a detailed proposal for this procurement process
- If approved by the SEMC, TSOs will publish the detailed proposal for public consultation
- Timeline for consultation/decision will need to take into account CRM auction timeline dependencies (aligned with T-4 auctions)

