

SEVEN YEAR TRANSMISSION STATEMENT

2003/04 - 2009/10

DECEMBER 2003

Geo-maps and schematic diagrams have not been included in this document.

If required users should contact SONI where a procedure exists to verify all users of this sensitive information.

FOREWORD

The Transmission Seven Year Statement is required to comply with the Transmission and Public Electricity Supply Licence issued under the Electricity (Northern Ireland) Order 1992.

This is the eighth publication of the statement, the first having been issued in March 1993.

SEVEN YEAR TRANSMISSION STATEMENT

For the years 2003/04 to 2009/10

The information used to compile this statement is derived from Northern Ireland Electricity (NIE)/System Operator for Northern Ireland (SONI) data archives. Whilst all reasonable care has been taken in the preparation of this data, NIE/SONI is not responsible for any loss that may be attributed to the use of this information.

This document may not be reproduced, in whole or in part, for any purpose, without the written permission of SONI.

December 2003

© Copyright of SONI Ltd., November 2003. 12 Manse Rd, Belfast, BT6 9RT

SYSTEM OPERATOR FOR NORTHERN IRELAND LTD.

TRANSMISSION SYSTEM SEVEN YEAR STATEMENT

For the Years 2003/04 to 2009/10

Prepared December 2003

SYSTEM OPERATOR FOR NORTHERN IRELAND LTD.

TRANSMISSION SYSTEM SEVEN YEAR STATEMENT

CONTENTS

Page

Section 1	Introduction 1		
Section 2	Main Technical Requirements of the Supply System - The NIE Grid Code 2		
		equency ltage	
Section 3	Licence (Sy	stem Security and Planning) Standards	4
Section 4	System Reli	ability, Stability and Quality	5
		rerall erconnection with Scotland	
Section 5	The NIE Tr	ansmission System	6
	5.2 Th 5.3 Th	e Existing System e Future Planned System – Development Approved e Future Planned System – Development Unapproved ecial Protection Schemes	6 6
Section 6	Interconnec	tion	8
	6.2 Fu	isting Interconnection ture Interconnection Development e of Interconnection	9
Section 7	Existing Ge	neration	11
	7.1 Ge	neration Capacity Agreements	11
	7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 7.2 Ge	Capacity Contracted to NIE through Power Purchasing Agreements (PPA's) Independent Power Producer (IPP) Generation Capacity Non Fossil Fuel Obligation (NFFO) Capacity Additional Renewable Generation NIE SMART Programme Potential Schemes Customer Private Generation	11 12 12 12 13 13
	7.3 Sp	inning Reserve - Load Shedding	13
Section 8		on System Data ystem Operator for Northern Ireland Ltd.	14

Seven Year Statement 2003

	8.1 F	orecast of System Maximum Demand	14
	8.1.1	System Maximum Demand	14
	8.1.2	System Maximum Demand Forecast	15
		10/33kV Bulk Supply Point (BSP) Loadings	
		Busbar Data	
		Circuit Capacities and Parameters	
		ransformer Data	
	8.6 2	75/110kV Interbus Transformer and Capacitor Data	16
Section 9	Transmiss	ion System Power Flows	17
	9.1 Iı	ntroduction to the Power Flows	17
		ower Flows for 2003/04	
		ower Flows for 2009/10	
Section 10	Transmiss	ion System Fault Levels	21
Section 11	Transmiss	ion System Capability - Matrix Study	22
	11.1 N	lew Generation Supplying Existing Load	
		dditional Generation Supplying Load in ESB	
	11.2.	1 Generation Location	
	11.2.	2 Increased Network Traffic	23
	11.3 A	dditional Generation Backing Off Supply from Scotland	24
		enewable and Embedded Generation	
	11.5 C	Conclusion	24
Section 12	Developm	ent Opportunities	26
	12.1 C	Opportunities for New Loads	
	12.2 C	Opportunities for New Generation	
	12.3 P	ossible Transmission Development Scenarios	
	12.4 C	Conclusion	

List of Tables:

Table 1	Available Generation Capacity		
	Table 1AExisting GenerationTable 1BNon Fossil Fuel Obligation (NFFO) CapacityTable 1CAdditional Renewable Generation		
Table 2	Table 2.1Transformer Capacity and Loadings at Bulk Supply PointsTable 2.2Substation Available Capacity		
Table 3	Bus Data - Winter 2003/04		
Table 4	Branch Data - Winter 2003/04 Branch Data - Winter 2003/04		
Table 5			
	Branch Data Changes - Winter 2003/04 – 2009/10		
Table 6	Transformer Data - Winter 2003/04		
Table 7	Transformer Data Changes - Winter 2003/04 – 2009/10		
Table 8	275/110kV Interbus Transformer and Capacitance Data - Winter 2003/04		
Table 9	Switchgear Ratings and Fault Levels 2006/07 (with ESB connection)		
Table 10	NIE Transmission Capability Matrix for 2009/10		

List of Figures:

Figure 1	2003 Busbar Layout for Power Flow Studies
Figure 2	2009 Busbar Layout for Power Flow Studies
Figure 3	2003/04 Summer Maximum Power Flow Study
Figure 4	2003/04 Autumn Maximum Power Flow Study
Figure 5	2003/04 Winter Maximum Power Flow Study
Figure 6	2009/10 Summer Maximum Power Flow Study
Figure 7	2009/10 Autumn Maximum Power Flow Study
Figure 8	2009/10 Winter Maximum Power Flow Study

List of Maps:

Map 1	Geographic Layout of the Existing NIE Transmission System – Year 2003/04
Map 2	Geographic Layout Showing the Approved Transmission System – Year
	2009/10

1. **INTRODUCTION**

This Transmission System Seven Year Statement has been prepared by System Operator for Northern Ireland Ltd. (SONI) in accordance with Part IIIC, Condition 11, of the Transmission and Public Electricity Supply Licence Document issued under the Electricity (Northern Ireland) Order 1992.

Potential users of the transmission system should also be aware of the following main documents:

- i) The NIE Grid Code;
- ii) Licence Standards Transmission and Distribution System Security and Planning Standards;
- iii) Statement of Charges for Connection to NIE plc Electricity Transmission and Distribution System;
- iv) Statement of Charges for Use of the NIE plc Electricity Transmission and Distribution System;
- v) The Bulk Supply Tariff.

Copies of the above documents may be obtained direct from SONI on payment of the respective fees.

The purpose of the statement is to provide:

- a) Such further information as shall be reasonably necessary to enable any person seeking use of system to identify and evaluate the opportunities available when connecting to and making use of such system including information on the status of transmission capacity and the anticipated future requirements of transmission capacity;
- b) A commentary prepared by the transmission system operator indicating the transmission system operator's views as to those parts of the transmission system most suited to new connections and transport of further quantities of electricity.

The major changes to NIE's network highlighted in this statement are the introduction of:

- a) An uprated Moyle HVDC interconnector (The NIE transmission system at Ballycronan More is connected to the Scottish Power System at Auchencrosh via the Moyle Interconnector) with installed capacity of 500MW;
- b) Commissioning of new CCGT generation capacity at Ballylumford Power Station;
- c) The planned introduction of a 275/110kV Grid Supply Point near Dungannon and 110/33kV Bulk Supply Points at Creagh and Newtownards;
- d) Enhanced interconnection with ESB (ROI);
- e) The planned introduction of new CCGT generation capacity at Coolkeeragh Power Station.

The format of the transmission capability matrix has been altered to better reflect present day operating characteristics and the Bulk Supply Point (BSP) demand data has been changed to indicate available substation capacity at each BSP. The latter has been introduced to assist network users in assessing connection opportunities and constraints.

2. <u>MAIN TECHNICAL REQUIREMENTS OF THE SUPPLY SYSTEM - THE NIE</u> <u>GRID CODE</u>

The transmission system must be planned and operated to provide secure and economic supplies of electricity with the quality of supply maintained at a satisfactory level.

The ability to supply customers during circuit outages is governed by Security and Planning Standard P2/5, as amended on 7th August 1992. The standard is complex but generally requires that the main transmission system will continue to supply all customers in the event of a single unexpected contingency in winter. In other seasons, the system should supply all or a defined percentage of load for an unexpected event during the maintenance of another circuit. The standard applies increasing security requirements as the group demand increases. In Section 11 of this Statement we consider a tower failure at 275kV to be a single event i.e. we look at the outage of two 275kV circuits on the same tower, to ensure that the system does not suffer catastrophic failure. The two most important characteristics which determine the quality of supply are frequency and voltage.

The Electricity Supply Regulations (Northern Ireland) 1991 set out the statutory obligations in relation to both frequency and voltage.

2.1 Frequency

The declared frequency is 50Hz and is normally controlled within the range 49.5Hz to 50.5Hz.

The frequency is maintained within the above range by balancing generation and demand. The NIE-ESB interconnected system is not synchronously interconnected with the European network and thus remains an "Island System"; as a result, the loss of a large generating unit could cause the frequency to fall below 49.5Hz for a few seconds. In such circumstances some system load may be shed automatically to assist in recovery of the frequency.

Interconnection of the NIE system with the ESB system via the Tandragee/Louth 275/220kV double circuit interconnector and two power flow controlled 110kV interconnectors, increases the inertia of the system. Under these circumstances, the loss of the generating unit impacts less severely than when the NIE system is isolated. Nevertheless, the loss of multiple generating units may in some circumstances still result in under-frequency load shedding.

There may be opportunities for the system operators to agree to use the Moyle interconnector to stabilise the system frequency for certain faults in the future.

2.2 Voltage

The voltage variation permitted (Electricity Supply Regulations NI) on the NIE 275/110kV transmission system is $\pm 10\%$.

The permitted step voltage changes are specified in the Transmission and Distribution System Security Planning Standards (PLM-ST-9).

The permitted step voltage changes are described below:

- a) For secured single circuit outage not greater than 6%
- b) For secured double circuit outage not greater than 10%.

(For a) and b) the 110kV voltage at Bulk Supply Points should not drop below 90%.)

The voltage at any point on the system is determined by the reactive power output of the generating plant, the tapping of the generator transformers and system transformers, the electrical characteristics of the system, and the level of load and its power factor. Voltage control is effected by providing automatic/manual control of the generator output voltage, altering transformer tapping positions and switching of shunt reactors or capacitors. These operational measures do not compromise the security standards imposed by the Licence Standards.

The main technical conditions to be met by users of the system are outlined in the Grid Code. The Grid Code sets out the principles governing NIE's relationship with users of the system. The code specifies procedures for both planning and operational purposes and covers both normal and exceptional circumstances.

The main sections of the Grid Code are as follows:

Planning Code Connection Conditions Operating Codes Scheduling & Despatch Codes Data Registration Code General Conditions Metering Code

(Note – Grid code changes to accommodate wind power generation are being prepared.)

3. <u>LICENCE (SYSTEM SECURITY AND PLANNING) STANDARDS</u>

The system is planned in accordance with the document entitled "Transmission and Distribution System Security and Planning Standards" which has been approved by Ofreg. The relevant standards applicable to the Transmission System are as follows:-

- ER P2/5 Security of Supply, dated October 1978, and NIE amendment sheet Issue 2, dated 7 August 1992.
- PLM-SP-1 Planning Standards of security for the Connection of Generating Stations to the System Issue 1, dated September 1975, and NIE amendment sheet Issue 2, dated 7 August 1992.
- PLM-ST-4 CEGB Criteria for System Transient Stability Studies Issue 1, dated September 1975, and NIE amendment sheet Issue 2, dated 7 August 1992.
- PLM-ST-9 Voltage Criteria for the Design of the 400kV and 275kV Supergrid System Issue 1, dated 1 December, 1985, and NIE amendment sheet Issue 2, dated 7 August 1992.
- ER-P28 Planning limits for Voltage Fluctuations.
- ER-P16 EHV or HV Supplies to Induction Furnaces.
- ER-P29 Planning limits for Voltage Unbalance.
- ER-G5/3 Limits for Harmonics. (shortly to be replaced by ER-G 5/4 -following UK practice)

EPM-1Operational Standards of Security of Supply, Issue 2, dated 30 June 1980.

(Note – the regulators and the relevant Government Departments in NI and RoI have placed an action on both NIE and ESBNG to determine to what extent Grid Codes and Licence Standards can be harmonised within the two domains.)

4. <u>SYSTEM RELIABILITY, STABILITY AND QUALITY</u>

4.1 Overall

The system is planned in accordance with the Licence Standards (see Section 3) where particular consideration is given to avoiding potential common mode failure problems. The location and connection arrangement of power sources is very important in this context.

As well as considering the reliability of circuits and load flows following circuit outages (overload situations), it is necessary to consider the electrodynamic performance of the system. When proposals for new generation or interconnection are being considered it is necessary to investigate transient stability (the resilience of the system to faults) and dynamic stability (resilience of the system to generator trips or circuit switching).

The installation of static compensators and the application of enhanced protection and control systems can usually prevent instability, which can result in loss of synchronism between generators, consequential tripping of circuits, mismatched pockets of generation and load, loss of supply and possible plant damage.

Having regard to the small size of the system, it is also necessary to consider the adequacy of the response characteristics of any significant generation capacity.

4.2 Interconnection with Scotland

The 500MW link with Scotland is described in section 6.0

HVDC links have the advantage over alternating current interconnection in that separate control of voltage and frequency can be maintained on each system. Power flow can be preset at a fixed value and in an emergency the link can provide additional support through its very rapid automatic response to system disturbances.

Although commutation failures, in import mode, can occur for faults on the Northern Ireland system, the effects are limited to a brief distortion of its 50Hz AC synchronous waveform. The rapid response means that the HVDC link can have a net stabilising effect on the Northern Ireland system in the event of generation loss.

Similarly an emergency action programme can immediately reduce import from Scotland or increase output to Scotland upon a sudden loss of load, e.g. all flows to RoI. This prevents severe over-frequency and plant trips.

5. <u>THE NIE TRANSMISSION SYSTEM</u>

5.1 The Existing System

The NIE Transmission System comprises some 2000 circuit kilometres of 110kV and 275kV overhead lines and cable. In the context of this statement the transmission system also includes the 33kV network in Belfast. This sub transmission system previously connected generation at Belfast West Power Station to the main transmission system. A geographic layout of the existing transmission system is shown in Map 1.

5.2 The Future Planned System – Developments Approved

As of 1 January 2003 system developments which have received capital expenditure approval by NIE for completion during the course of the seven year period are as follows:

- a) Creagh 110/33kV Substation a new 110/33kV substation (previously known as Bellaghy) will be commissioned by 2004;
- b) Newtownards 110/33kV Substation a new 110/33kV substation and associated 110kV feeders are proceeding through the pre-Planning Approvals consultation process. Subject to planning approval, it is estimated that the substation will be commissioned by 2005;
- c) 275/110kV Tyrone Substation phase 1 initially a new 275/110kV single 120MVA transformer substation is to be located close to the 275kV tower line and will supply Dungannon Main by a new 110kV circuit. The pre-Planning Approvals consultation process is ongoing. Subject to planning approval it is now estimated that the substation will be commissioned by 2006. Measures are being employed to reduce the risk created by the delay. A second phase described in 5.3 below will follow;
- d) Coolkeeragh to Strabane 110kV circuit enhancement work is underway to increase the rating of the existing circuits resulting in the two circuits having a winter rating of 166MVA. To achieve this, it will be necessary to uprate one circuit and parallel two other existing 110kV circuits. Balancing of mechanical forces also requires other circuits on the same towers to be similarly constructed. This will change the impedance of the other circuits but not their rating since only a small part of each circuit is reconstructed. This work will be completed by 2004.

A geographic layout of the system highlighting the above developments, where appropriate, is shown in Map 2.

5.3 The Future Planned System – Developments Unapproved

a) 275/110kV Tyrone Substation phase 2 - the final phase will involve the installation of a second 275/110kV 240 MVA transformer. This will be accompanied by 110kV circuit reconfiguration work. Dungannon 110kV mesh (age expired) will be removed, with Dungannon 110/33kV Bulk Supply Point substation being supplied by two 110kV transformer feeders (existing circuits which may be reconductered) out of the Tyrone 110kV Substation. This work is planned to occur by 2009. Other 110kV circuits in the region may be reconfigured to optimise the system performance.

5.4 Special Protection Schemes

a) 110kV Circuit Protection scheme Tandragee – Drumnakelly – Dungannon

Under certain 110kV circuit outage scenarios the Tandragee – Drumnakelly circuits can be significantly overloaded. To relieve the position a special protection scheme will be installed which involves a combination of tripping certain circuits and load shedding measures. The scheme should be operational for March 2004.

b) Coolkeeragh Under Voltage Scheme

At peak load times when there is insufficient operational generation at Coolkeeragh, under-voltage conditions may occur in the North West when an outage occurs on the Magherafelt to Coolkeeragh 275kV double circuit. To prevent this happening a special protection scheme will be installed which involves load shedding measures. This scheme is active at the time of issuing this Statement.

c) Coolkeeragh Generation Curtailment Scheme

A new CCGT (400MW) is to be installed at Coolkeeragh. If the CCGT (and OCGT) is operating with substantial export at times of low NI load and outage on the Magherafelt to Coolkeeragh 275kV double circuit, the 110kV local circuits would overload. Under these rare circumstances the CCGT output will be automatically curtailed (to about 190MW).

d) Ballylumford Generation Curtailment Scheme

In the 2001 SYS we stated that no more generation could be absorbed on Island Magee. Since then, an arrangement has been made to allow RoI generation capacity shortage to be relieved by utilising a generator otherwise due to be retired at Ballylumford. This could only be managed on a disconnectable basis as agreed by the parties. When an outage occurs on either Ballylumford 275kV circuits the unit supplying RoI is tripped.

6. **INTERCONNECTION**

6.1 Existing Interconnection

275kV Tandragee – Louth Interconnector

The system was re-connected with the RoI's Electricity Supply Board (ESB) system in March 1995. The interconnection is via a double circuit 275kV line between Tandragee and Louth terminated in two 300MVA 275/220kV transformers, both circuits were uprated to have a capacity of 600MVA. This was achieved by paralleling the existing 300MVA transformers on one circuit and the installation of a new 600MVA transformer on the other.

The 275/220kV interconnection provides the opportunity to share 'spinning reserve' and trade energy between the two systems.

The firm capacity of the interconnector plant is assessed as the emergency overload rating of one circuit – 660MVA summer rating. The NIE or ESB systems <u>may</u> from time to time impose more severe restrictions. Taking account of thermal, voltage and stability limitations in NI and RoI networks the 2004 N-S capacity auction offered 330MW and the S-N auction offered 0MW.

110kV Interconnection with ESB Network

110kV interconnection with ESB is as follows:

- (a) Strabane-Letterkenny 110kV standby circuit 110kV single circuit line crossing the border was commissioned in March 1995.
- (b) Shankill/Cathaleen's Fall-Enniskillen 110kV standby circuit as above.

In 2001, both standby circuits were converted into permanent interconnectors by being power flow controlled. The power flow controllers are rated at 125MW. The power flow controllers are normally adjusted to close to 0MW transfer but can be set to any desired flow to support either system during abnormal operation. The systems are not considered stable in the absence of 275kV interconnection and therefore the 110kV interconnectors are automatically removed from service in the absence of both 275kV interconnector circuits. In the event of a severe outage e.g. Cool-Mag D/C 275kV, the power flow controllers allow the immediate support from the healthy system to remain, pending manual control action.

Interconnection with Scotland

The Moyle interconnector, Northern Ireland - Scotland, was established in 2001 and is constructed as a dual monopole HVDC Link with two coaxial undersea cables from Ballycronan More, Islandmagee, Co Antrim to Auchencrosh, Ayrshire. The link has an installed capacity of 500MW. The present system constrains Scotland to Northern Ireland tradable capacity to 400MW. The converter station at Ballycronan More has been looped into one of the 275kV Ballylumford to Hannahstown circuits.

6.2 Future Interconnection Development

NIE and ESB have been exploring the potential for additional interconnection. The primary object is to further increase the security of trading and 400kV, 275kV and 110kV options are being considered. To date, technical appraisal favours additional 275kV interconnection however economic, stakeholder and routing studies are being undertaken.

6.3 Use of Interconnection

The NIE/ESB Joint Operating Panel agree operating procedures for NIE/ESB interconnectors. Under the Operation Agency Agreement with the asset owner, Moyle Interconnector Limited ("Moyle"), SONI operates the interconnector with Scotland in conjunction with its operation of the NIE System. As part of this arrangement, SONI manages the interface with the System Operator in Scotland through the Interconnector Operating Panel. Cross-border trade is in line with the EU IME Directive (concerning rules for the internal market).

Moyle

The total East-West Net Transfer Capacity (NTC) of the Moyle Interconnector is as follows (Winter meaning November to March and Summer meaning April to October):

•	Winter	400MW
٠	Summer day	400MW
٠	Summer night	300 MW

Out of these capacities, there is a priority reservation of 125MW until late 2007 for the Capacity Agreement between Moyle and the NIE Power Procurement Business (PPB), which was an integral part of the agreement between NIE and Scottish Power under which the Moyle Interconnector was built. The reservation is to enable PPB to deliver its 125MW supply agreement with Scottish Power (interruptible by SP).

The remaining 275MW (175MW on summer nights) of the NTC has been offered to the market for energy trading and is fully contracted until March 2005 on 1 year, 2 year and 3 year contracts. Capacity will again be offered to the market as it comes out of contract, under arrangements to be agreed by Moyle, SONI and Ofreg.

West-East capacity is also available and has been offered to the market on successive occasions but the capacity has remained unsold.

NIE – ESB

Similarly the Available Transfer Capacity (ATC) on the Tandragee - Louth 275/220kV interconnector is auctioned annually. The Capacity Auction for 2002/03 was for 120MW North-South and 50MW South-North. The Capacity Auction for 2003/04 was for 300MW North-South (this was restricted for a period until a transmission project was completed in RoI). Due to system constraints the South-North capacity was reduced to zero for much of the year. The Capacity Auction for 2004/05 was for 330MW North-South. No transfer capacity was available for auction in the South-North direction 2004/05. Relevant considerations are the system voltage stability on the

loss of a double circuit 275kV line and the frequency impact of a sudden loss of the interconnector.

To facilitate trades, a superposition trading product was introduced in 2003. A trader wishing to transit RoI - NI may nominate and will be guaranteed transit if linked to an NI - RoI trade (providing NI - RoI is the dominant flow). Other RoI - NI nominations may also be allowed, but are not automatic. This "netting-off" of trades allows further NI - RoI trades to take place.

Interconnection with Scotland and ROI offers opportunities to transfer power in either direction. The level of transit flows takes account of all operational aspects such as the impact factor on the NIE or combined NIE/ESB system and commercial aspects such as the cost resulting from any redistribution of spinning reserve. The ability to transit flows to RoI, especially at times of low indigenous NI load, is related to the ability to control frequency in the event of loss of interconnection. This is now managed in part, by a rapid reduction in the Moyle import.

7. <u>EXISTING GENERATION</u>

7.1 Generation Capacity Agreements.

7.1.1 Capacity Contracted to NIE through Power Purchasing Agreements (PPA's)

Plant contracted to NIE under pre-vesting contracts totals to a maximum of 1658MW measured as output capacity at generator terminals. These contracts contain expiry dates, though Ofreg may cancel contracts at earlier cancellation dates. The PPA's or Generating Unit Agreements cover availability, operating characteristics, payments, metering etc. Power Station Agreements cover matters such as outage planning, emmissions, fuel stocks.

The Kilroot Power Station (KPS) units will be available until at least 2010, and Coolkeeragh Power Station (CPS) units until 2002-2004. A number of contracts have already been cancelled at Power Station West and Coolkeeragh Power Station.

At Coolkeeragh this report assumes 2 x 60MW sets (G6 & G7) are available in winter peak, until the new Coolkeeragh CCGT plant is commissioned in Winter 2005/06.

This Seven Year Statement is based on generation information available at the freeze date (1 Jan 2003). At that date NIE had entered into agreements relating to replacement of the three 200MW units at Ballylumford by two CCGT units with capacities of circa 500MW and 100MW. This newly contracted plant will be available until at least the year 2012. The 500MW CCGT unit, is connected to the 275kV system, comprises of two GTs of capacity 160MW and one steam turbine of capacity 180MW. A further 106MW CCGT is connected to the 110kV system. Each unit is equipped with distillate fuel back-up. Plant commissioning was complete by Winter 2003/04. The existing 120MW steam plant Unit 1 was also to be retained.

The NIE Power Procurement Business (PPB) has subsequently contracted with parties to be a virtual power producer. To deliver obligations to ESB, Unit 6 at Ballylumford is now retained in addition to the new CCGT. This capacity, reduced to 180MW sent-out, is not counted in the calculation of capacity available for NI. At the same time, Unit 1 at Ballylumford has been withdrawn and is replaced until 2012 by Unit 4 at a maximum sent-out capacity of 180MW. Unit 5 can be used only as a replacement for units 4 or 6. Units 2 and 3 have also been decommissioned and they will not be replaced. The power stations, generating units and contracted capacity are shown in Table 1A and reflect the position known in December 2003.

7.1.2 Independent Power Producer (IPP) Generation Capacity

Ofreg has a duty to promote competition in the generation and supply of electricity. Competition in wholesale electricity trading, in line with the EU IME Directive (concerning common rules for the internal market in electricity 2003/54/EC), was introduced in July 1999. Moyle is currently the main facilitator of IPP capacity. Coolkeeragh CCGT (400MW) will operate as an Independent Power Producer and will be on line before Winter 2005/6.

Each generator who wishes to participate in wholesale electricity trading must enter into a System Support Services Agreement with the Transmission System Operator (SONI).

This agreement covers items such as black start, operating characteristics, outage planning, and the provision of system support services. IPPs also pay transmission use of system tariff (TUOS) to NIE.

Market opening was extended in April 2001 to approximately 35% of total energy sales. The market is open to customers whose annual consumption is equal to or greater than 0.79GWh. This equates to a peak demand for the eligible market in 2003 of approximately 400MW. To gain the true benefits of market opening requires competition in the energy production sector. The opportunity to supply this sector of the market should provide the necessary incentive for the introduction of additional generating plant. Readers should note that:

- the new IPP generation at Coolkeeragh is 400MW (planned for operation in 2005)
- a stage of further Market Opening takes place in April 2004
- all non-domestic customers will be eligible to change supplier from early 2005.

7.1.3 Non Fossil Fuel Obligation (NFFO) Capacity

Under the Non Fossil Fuel Obligation (NFFO), NIE signed contracts for approximately 15 MW DNC (Declared Net Capacity) of Non Fossil Fuel Plant on 1 April 1994 (NFFO1) and 16 MW DNC on 4 September 1996 (NFFO2). These are detailed in table 1C. These contracts will start to expire in 2009. Under NFFO1 and NFFO2, a total of approximately 14.5 MW DNC and 2.9 MW DNC respectively was commissioned at 1st August 2001. The NFFO schemes are displayed in table 1B.

7.1.4 Additional Renewable Generation

Wind generating units are generally connected to the Distribution network (33kV and 11kV) and network analysis/design takes into consideration the variability of this source of energy. Three projects are listed in Table 1C, they have a total maximum power output of 47.7MW.

DETI intend to consult in May 2004 and again in Autumn 2004 on the introduction of a NI Renewable Obligation Certificate system. The certificates are proposed to be tradable in a UK market. An obligation based on consumption is to be directed at suppliers. This will increase incrementally until 2012 when a 6.3% consumption target is reached. DETI also propose an aspirational target of 12% by consumption for the year 2012.

7.1.5 NIE SMART Programme

NIE is incentivised to support emerging renewable technologies and seek embedded/renewable generation which can provide a contracted level of support to the distribution system. Areas of network opportunity are detailed at nie.smart.co.uk

7.1.6 Potential Schemes

NIE have a duty to retain as confidential, information on applications, however two projects have been widely reported and consulted upon. They are a lignite fired station near Ballymoney and a large off-shore wind farm located in the sea around the north coast. NIE have studied both generation connections but are not aware that either is proceeding at present.

7.1.7 Customer Private Generation

A number of customers have been reducing their energy consumption at peak demand times by load shifting or by running private generation. NIE has tended to view this generation as non-permanent due to a number of factors.

- a) The operation of this plant is not as reliable as conventional contracted plant;
- b) Variable generation costs (diesel/hire charges); and
- c) Variable tariff price signals.

Levels of this generation on the network are significant and are estimated at circa. 118 MW. If and when embedded generation levels increase, a probabilistic approach will be developed. NIE also plans to examine Table 2 in licence standard P2/5 to allow greater distribution system reliance to be placed on embedded generation. This in turn effects the expected demand at transmission Bulk Supply Points (BSP).

7.2 Generation Operation

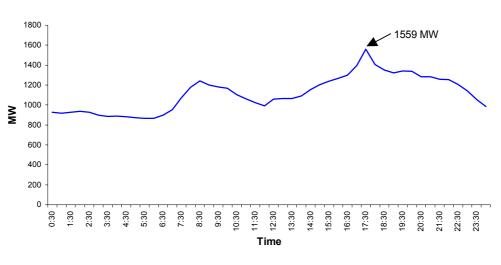
The scheduling of generating plant to meet the demand is carried out with the nominated IPP generation dispatched first and the remaining capacity on a merit order cost basis. Low marginal cost plant will be called before high marginal cost plant and any spare IPP capacity will be taken on an economic basis. Exceptions to this rule can occur in respect of (a) providing security to the North West or (b) during scheduled outages of transmission circuits for major construction projects, refurbishment and/or maintenance. Further exceptions to the rule can occur in respect of government imposed limitations on power station flue gas emissions.

7.3 Spinning Reserve - Load shedding

When isolated, the NIE system is operated with a minimum of four generating units carrying spinning reserve covering at least 68% of the largest infeed to the system. For a sudden loss of generation the balance is restored by shedding load via a low frequency selective tripping scheme. Should one generating unit trip the remaining three provide the spinning reserve cover as above and load shedding may take place. The 275/220kV Tandragee - Louth interconnector enables spinning reserve to be shared between the two systems. The total combined utility spinning reserve requirement is based on 80% of the largest island infeed. The inter-utility mechanism for sharing spinning reserve is kept under review for optimal economic and secure operation of the combined systems. Currently NIE provides no less than one third of the total spinning reserve requirement. When interconnected NIE will operate with a minimum of four generating units as described above.

8. TRANSMISSION SYSTEM DATA

8.1 Forecast of System Maximum Demand


The Transmission & Distribution system maximum demand data is based on totalised data from power stations, interconnectors, NFFO and other renewable generators, and customer private generators.

Temperature has been found to have the greatest effect on demand compared with other meteorological factors. Temperature correction in the form of average cold spell (ACS) analysis is necessary to remove the demand variation caused by temperature, thus enabling the underlying demand growth-rate to be determined more accurately.

8.1.1 System Maximum Demand

The actual 2001/02 NIE system peak demand was 1677MW (1532MW centrally despatched, NFFO 27MW and customer private generation 118MW) and occurred on 6th December 2001 at 17.30hrs. When adjusted to Average Cold Spell (ACS) conditions the peak demand was 1702MW.

The generated profile including NFFO for 6th December 2001 is shown in Figure 1 below. Network utilisation is at a maximum around 17:30hrs; this maximum demand is as a result of coincidental usage patterns, for example domestic cooking load, lighting load etc. The graph (Figure 1) does not include the demand that was suppressed by customer private generation. At a nodal level, no simple relationship between winter and summer daily load patterns can be ascribed. At some nodes the summer peaks appear early in the day whereas others continue to occur around the evening meal time. This variance is the result of the mix of commercial, industrial, and domestic load at a particular node.

Generated Peak Demand Profile (6/12/01)

Figure 1

System Operator for Northern Ireland Ltd. Seven Year Statement 2003

8.1.2 System Maximum Demand Forecast

The forecast (Figure 2) used in this statement is based on data up to and including the 2001/02 winter period and is corrected for ACS conditions. Customer Private generation demand data (Section 7.14) is also included.

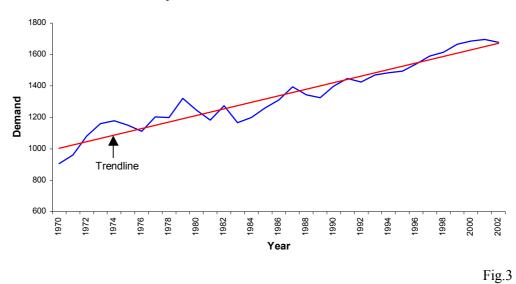

2003/04	2004/05	2005/06	2006/07	2007/08	2008/09	2009/10
1787	1817	1849	1881	1914	1947	1981

Fig. 2

Note: The above figures include private generation whereas the Generation Seven Year Statement is net of private generation.

Within the context of a global slowdown, the NI economy has performed reasonably well. Northern Ireland's relatively greater dependence on the public service sector and public expenditure has sheltered it to some degree from this global slowdown. Unemployment is now at low levels, however the Q1 2003 estimates for manufacturing output show there was a fall of 1.4% from the previous quarter, and a decrease of 1.9% compared to the same period a year earlier. The overall network demand growth predictions are reduced from growth rates in excess of 2% in the late nineties to a current prediction of 1.8%. NIE demand predictions take into consideration exogenous factors such as the impact of Natural Gas and Energy Efficiency Initiatives.

Fig.3 plots historic system peak demands for the past 33 years. Demand growth has been steady throughout this period though it is significant that for the last 5 years the trend line has been exceeded.

Overall System Historic Maximum Demands

System Operator for Northern Ireland Ltd. Seven Year Statement 2003

8.2 110/33kV Bulk Supply Point (BSP) Loadings

The BSP installed transformer capacity, substation firm capacity and predicted demands are given in Table 2.1. Those substations whose firm capacities are exceeded are highlighted (notes indicate how this will be managed). The geographical location and connectivity of BSP's can be determined from Maps 1&2. NIE have plans in place to ensure compliance with licence standards for example to increase substation firm capacity, to obtain load relief through commissioning new BSP's (Newtownards/Creagh) or to carry out small amounts of load shedding as permitted in licence standards.

Developments, which have been approved, are described in Section 5.2.

Table 2b indicates available capacity at each BSP. This Table is drafted on the basis of not extending load shedding and has been introduced to assist network users in assessing connection opportunities. It will be necessary to carry out further analysis depending on the magnitude and type of load to be connected, to establish if a connection is viable.

8.3 Busbar Data

The data for base year 03/04 is given in Table 3. The data comprises the node definition, voltage, active and reactive load.

8.4 Circuit Capacities and Parameters

The continuous thermal rating of a circuit is the maximum power flow that can be passed through the circuit on a continuous basis. On overhead lines, the circuit rating ensures that conductor sag does not infringe statutory clearances and that circuit damage is avoided. There may be instances where protection system characteristics produce a limitation. The thermal rating varies for each season of the year, due to the impact of differing climatic conditions on equipment performance. The data for the base year 03/04 are given in Table 4. The data comprises the identification information, resistance, reactance, susceptance and seasonal ratings of overhead line and cable circuits. Table 5 provides the data for changes to the system over the seven year period.

8.5 Transformer Data

The 110/33kV Bulk Supply Point (BSP), interconnectors and generator transformer data for base year 03/04 are given in Table 6. The data comprises the transformer upper and lower tapping ratios, the number of tap steps, resistance, reactance and ratings. The ratings are maximum continuous values and do not allow for short term enhancement. Table 7 indicates transformers added over the seven year period.

8.6 275/110kV Interbus Transformer and Capacitor Data

The interbus transformer data is displayed in Table 8. This comprises the transformer upper and lower tapping ratios, the number of tap steps, winding resistance/reactance, and rating information. Interbus transformers added to the system over the seven year period are also indicated. Table 8 highlights the location, voltage level and the magnitude of installed fixed capacitance. The operation of this equipment will be variable and dependant on network operating conditions, configuration etc.

9. TRANSMISSION SYSTEM POWER FLOWS

9.1 Introduction to the Power Flows

The previous sections have described the background to the NIE transmission system and how it is designed and operated. This section of the report presents, and discusses, the results of studies on system performance over the next seven years.

The power flows on the NIE transmission system in the financial years from 2003/04 through to 2009/10 are represented as follows:

- a) Figures 1 2 busbar layouts year 2001 and year 2009.
- b) Figures 3 5 network load flows for summer, autumn and winter 2003/04.
 - c) Figures 6 8 network load flows for summer, autumn and winter 2009/10.

The report provides detailed information for those years where intended system developments impact on the load flows.

In any one year, the power flows on the transmission system vary on a seasonal basis with changing demand and with changing generation profile. To give an appreciation of the effect of these different load and generation combinations, the report considers three representative seasonal power flows for each of the years above. The seasons and load conditions are:

winter, peak load condition; autumn, peak load condition; and summer, peak load condition.

Analysis of system demand levels has led to an assessment that summer and autumn peak load conditions equate to 69% and 75% of winter peak demand levels respectively.

The power flow studies represent normal system conditions with no fault or maintenance transmission plant outages. Some transmission circuits are run open where this is a normal running arrangement for the season being studied. The effect of fault or maintenance outages is normally assessed in Section 11 on 'Transmission System Capability'.

The changes to the transmission system that are used in the power flow models are those authorised projects which are listed in Section 5.2 and an unapproved but expected reinforcement described in section 5.3. In the power flow studies, the 110kV interconnections with ESB are assumed to run with zero power transfer due to the normal operational practices. The 275kV Tandragee - Louth ESB interconnector is assumed to have a zero transfer initially in 2003/04 powerflows. After the new Coolkeeragh CCGT Power Station is commissioned by Winter 2005/6 the interconnector transfer north to south is increased to circa 200MW. The Moyle Interconnector is operating throughout the Statement Period (2003/04 - 2009/10) with varying transfers to meet the Northern Ireland system maximum demand.

In the power flow diagrams (Figures 3 to 8), the MVA flow on each circuit is shown above the line with the direction of flow being indicated by the arrow. The percentage

loading in the circuit is shown below the line. The figure is the MVA flow, divided by the appropriate MVA line rating for the season being studied.

An overhead line, in common with other equipment on the transmission system, has a maximum continuous rating which is set by the heating effect of the current passing through the circuit. For ease of interpretation the current limit is normally converted to an equivalent MVA rating. This rating varies with ambient temperature, so a given circuit will have different seasonal ratings. Some terminal equipment may need to be modified or replaced to enable the full circuit rating to be achieved.

In the schematic of the powerflow results (Figures 3-8), the percentage shown is at the <u>seasonal</u> rating, for example the summer peak powerflow drawings show the percentages of summer ratings for each circuit. The Voltage (p.u.) is displayed beside each busbar.

The 2003/04 Winter powerflow (Figure 5) assumes 2 x 60MW sets (G6 &G7) are available at winter peak, until the new Coolkeeragh CCGT plant is commissioned Winter 2005/06. The Coolkeeragh G6 and G7 units are not connected in Autumn or Summer as a special protection scheme will be commissioned to safe guard against a Coolkeeragh – Magherafelt 275kV double circuit outage.

At the report freeze date (Jan 2003), the contracted plant at Ballyfumford was the new CCGT plant (GA-GD figures 1- 8, 600MW total) Unit 1 (1 X 120MW) and Units 7 & 8 (2 x 60MW) open cycle gas turbines. *Since that date Unit1 has been withdrawn and replaced with Unit 4 (1 x 200MW). Unit 6 has been contracted to meet ESB obligations. These arrangements are described in more detail in section 7.*

The 275/220kV Tandragee - Louth interconnector impacts on the generation dispatches used for the power flows. The sharing of spinning reserve can result in less generating units being required to meet the peak demand. In the final years of the statement, an acceptable generation dispatch has been achieved despite the retirement of generating plant at Coolkeeragh and Belfast West power stations. The system spinning reserve requirements have been met by operating open cycle gas turbines at Ballylumford and Coolkeeragh Power Stations. The Seven Year Generation Capacity Statement 2003 offers a detailed review of future generation capacity adequacy.

In the following subsections, the power flow studies for each of the study years are discussed.

9.2 **Power Flows for 2003/04**

The three seasonal loadflows for 2003/04 are presented as follows:

Figure 3 - Summer Peak Flow 2003 Figure 4 - Autumn Peak Flow 2003 Figure 5 - Winter Peak Flow 2003/04

There are a number of changes in the Winter 2003/04 base year load flow file (Figure 5) when compared to previous Transmission seven year statements:

Newry & Ballynahinch 110/33kV Substations - The transformer capacity has been increased with the introduction of two new 90MVA units.

Interconnection – Significant interconnection projects have been completed (see Section 6 for detail).

- a) 110kV powerflow controlled interconnectors from Enniskillen and Strabane to RoI.
- b) Tandragee/Louth 275kV interconnector enhancement (see Section 6 for details).
- Moyle HVDC Link between N. Ireland (Ballycronan More) and Scotland (Auchencrosh). In the 2003/04 Winter loadflow Moyle is importing 450MW (Figure 5).

Network Capacitors – The diagram (Figures 3-8) includes mechanically switched capacitance to manage certain critical 275kV double circuit outages. Capacitance is installed at Castlereagh, Tandragee and Coolkeeragh. The Load Flows (Figures 3-8) show the Castlereagh to Carnmoney and Ballyvallagh to Kells 110kV circuits switched out to avoid overloads under certain critical 275kV double circuit outages.

Creagh 110/33kV Substation - A new 110/33kV Substation (previously known as Bellaghy) will be commissioned by Winter 2003/04 (Figure 5). This Substation will relieve Ballymena 110/33kV BSP where the firm capacity is exceeded. The initial commissioning load on Creagh will be increased when Tyrone 275/110kV Substation is commissioned by Winter 2005/06.

Ballylumford CCGT Generating Plant – The new CCGT plant (GA –GD) are shown connected to Ballylumford (Figures 3-5 busbars 70520 & 70510)

Power Station West retirement – The final 2 x 60 MW sets were decommissioned in 2002. This has resulted in increased power flow into Belfast on the interbus transformers at Castlereagh and Hannahtown, the Hannahtown transformer loadings have increased by circa 60MW comparing Winter 2001/02 with 2003/04 (Figure 5).

In all three powerflows, summer, autumn and winter, the transmission circuit loadings remain within circuit rating, except for Tandragee to Drumnakelly 110kV circuits whose ratings can be exceeded for some secured contingencies. Maintenance management regimes are presently in place to prevent overload of these circuits and a special protection scheme is due to be commissioned 2003/04.

9.3 **Power Flows for 2009/10**

Seasonal loadflows have been prepared to show the effects of significant developments. The three seasonal loadflows for 2009/10 are presented as follows:

Figure 6 - Summer Peak Flow 2009 Figure 7 - Autumn Peak Flow 2009 Figure 8 - Winter Peak Flow 2009/10

In addition to the changes detailed in Section 9.2 above these loadflows represent the effects of some additional future developments described in Section 5. *Creagh 110/33kV Substation* – As described in Section 9.2 a new Creagh 110/33kV Substation will be commissioned by Winter 2003/04 (Figure 5). This Substation will

support additional load after 2005/06 when Tyrone 275/110kV Substation is commissioned. A total of circa 36MW will be transferred from Ballymena 110/33kV mesh where the firm capacity is exceeded. Comparison of Winter 2009/10 (Figure 8) and 2003/04 (Figure 9) shows a reduction in flow on the Kells – Ballymena 110kV feeders.

Newtownards 110/33kV Substation – A new 110/33kV Substation and associated overhead line feeders will be commissioned by Winter 2004/05. This development will relieve the load at Rathgael and Rosebank BSP's. In Figure 5, the 2003/04 winter file, the demand on the Rathgael circuits is approaching 50% utilisation. This exceeds their autumn and winter ratings under single circuit outage conditions. To safeguard the North Down system, NIE has installed a 33kV load shedding scheme until Newtownards is commissioned. When comparing the 2003/04 (Figure 5) and 2009/10 (Figure 8) winter files, the effect of the Newtownards 110/33kV Substation is to reduce the load on each Rathgael circuit by circa 10MW. Further Permission related delays may require additional load shedding schemes to be commissioned.

Tyrone 275/110kV Substation Phase 1 – The initial plan is to install a new 275/110kV single transformer (120MVA ex-Coolkeeragh) Substation. The node will be supplied by one of the 275kV circuits from Tandragee to Magherafelt and will be physically located close to the 275kV tower line. Tyrone 275/110kV Substation will supply Dungannon Main by a new single 110kV circuit. It is anticipated that the Substation will be commissioned by Winter 2005/06.

275/110kV Tyrone Substation phase 2 - The final phase will involve the installation of a second 275/110kV 240 MVA transformer. The reconfiguration of the 110kV network, will result in the Tyrone 110kV node being connected via two 110kV circuits to Omagh and Drumnakelly 110kV nodes. Dungannon 110kV mesh (age expired) will be removed, with Dungannon 110/33kV Bulk Supply Point Substation being suppled by two 110kV transformer feeders out of the Tyrone 110kV Substation. This work is planned to occur by 2009.

A comparison of Figure 5 and Figure 8, winter maximum files for the years 2003/04 and 2009/10 respectively, indicates a reduction in utilisation on heavily loaded circuits feeding the west of the province (Coolkeeragh – Strabane & Tandragee – Drumnakelly). The voltage on the Omagh 110kV mesh is enhanced by 2% as a result of this project.

Coolkeeragh CCGT Generating Plant – The new CCGT plant comprising GT 260MW and ST 140MW are shown connected to the Coolkeeragh 275kV and 110kV busbars respectively (Figures 6-8). A comparison of the Winter 2003/04 (Figure 5) and 2009/10 (Figure 8) loadflows highlights a considerable change in the load flows into the North West of the province. For example power reversal occurs on the Coolkeeragh – Magherafelt circuits. The North West now exports 100MW onto the 275kV network rather than previously importing 160MW.

Again in all three systems normal power flows. The transmission loadings remain within circuit rating. Section 11 of this Statement examines the effect of outages under a range of scenarios.

10. TRANSMISSION SYSTEM FAULT LEVELS

In this Section the three phase and single phase to earth fault levels at the 275/110kV busbars on the NIE transmission system are considered. Fault levels are calculated for the 2006/07 Winter and displayed in Table 9. By displaying fault levels for this year we have included the effects of the new generation at Coolkeeragh.

The fault studies have been conducted with the combined ESB and NIE systems. This fully interconnected all-Ireland model simulates fault conditions more accurately than using a NIE model solely with a single equivalent generator representing ESB. The fault studies are carried out using a pre-fault load flow fault current assessment technique using generator sub-transient reactances.

The calculated system fault levels are based on the 2006/07 Winter maximum system with typical generation in the NIE system including:

Ballylumford	G4, G6, G7, G8, GT21, GT22, ST20 GT10
Coolkeeragh	G4, G6, G8 (G4 & G6 planned CCGT plant)
Kilroot	G1 & G2
Moyle	

Power Station West has been decommissioned.

The HVDC link is assumed to be in service in the studies with an import of 250MW. The link has no significant fault level contribution. The 275kV Tandragee to Louth Interconnector is upgraded to 600MVA rating with a North to South transfer of circa 300MW.

The fault level on the NIE transmission system has generally increased compared with previous statements. This is a result of the installation of new CCGT generation capacity at Ballylumford and the planned introduction of capacity at Coolkeeragh Power station. High fault levels have to be managed at generation nodes.

11. TRANSMISSION SYSTEM CAPABILITY - MATRIX STUDY

By 2009, we anticipate having a full specification 275/110kV substation at Tyrone/Drumkee. Nonetheless, by this time, load growth is starting to stress the remaining transmission system. This is most obvious in a thermal sense for double circuit outages in summer in the area around Ballylumford. In winter when the load is higher, the system voltage becomes threatened during some double circuit 275kV outages.

It is envisaged that a small amount of static reactive support will be fitted in the intervening period, primarily to support the north west voltage. Our present assumption is that 48 MVARs is required. Thermal issues may be managed by re-configuration and special protection schemes. In particular, we have in mind to operate the system so that the Lisburn load becomes radially supplied from Tandragee which will reduce loading on the Hannahstown interbus transformers. These would however need to be closed during Hannahstown transformer maintenance, in case the other transformer became unexpectedly outaged. We also expect to normally operate the 110kV circuits between Castlereagh and Ballylumford and between Ballylumford and Kells closed but with special protection schemes designed to automatically open at Castlereagh and beyond Ballyvallagh when contingency overloads appear. We have also noted that the configuration at Kells 275kV mesh Substation leads to overloads on the Ballyumford to Ballyvallagh circuits and we intend to reconductor these or to introduce a third interbus transformer at Kells.

In previous statements we have attempted to estimate the cost of work for each element of the matrix because each transmission project is unique, the work needs to be estimated specifically, and we believe it may be misleading to use generic cost figures as guidance. We therefore now prefer to leave costing until specific projects are identified. Recognising that readers need some scale, in this text, we have tried to point to the order of magnitude of costs. We believe that indicating the work involved is likely to give guidance as to the achievability of projects.

11.1 New Generation Supplying Existing Load

In this set of studies we explore the effect of increasing generation by up to 400MW at each node without increasing the overall traffic on our network i.e. we do not increase demand, rather we reduce generation in other places. This helps readers to become aware of pure generation location issues.

There are limits to what we can check in this study and to avoid giving misleading information we will also refer to other work. The primary limitation of the study is that, in summer, we would not have sufficient NI load to allow full output from Ballylumford and Moyle including a further 400MW generator at either location. We have however separately explored the issues and the result is similar to the section on transfer to ESB in that Ballylumford-Kells (33km) and Ballylumford-Hannahstown (44km) 275kV circuits both overload and need uprated.

We have been told that the pure conductor costs lie around $\pounds 200,000$ / km but believe that site obstacles could lead to a doubling or more of this Figure. We believe that we are also coming close to the margin of voltage collapse in this situation and it is prudent to allow for 30-50 MVAr of Static Var Compensation (SVC). As guidance only, SVC's of this

level have a cost around £7m. No other generation locations give rise to network problems except for Coolkeeragh where the node is generation saturated. A further 275kV circuit between Coolkeeragh and Magherafelt would be required. We previously estimated this at around £25m.

11.2 Additional Generation Supplying Load in ESB

Recent history of energy flows indicates that there is a requirement to transmit about 200MW to the RoI. We have considered this as a base position for our studies, therefore when we describe a new 400MW generator exporting to ESB we imply a transfer of a total of 600MWs but with no reactive power. To save confusion, all recent transmission studies have been based upon Total Transfer Capacity. Therefore this 200MW is not considered at the same time as with a rescue flow from north to south. Net Transfer Capacity would therefore be less (by about 110MW based upon current rules). Our studies have taken no account of stability issues but readers should understand that a sudden loss of all North/South interconnection will need to be managed to avoid frequency violations. Two sets of issues emerge from our studies. These are:

- (1) Generation Location
- (2) Increased Network Traffic

11.2.1 Generation Location

The Islandmagee area is saturated as a generation source. The complete outage of a 275kV power line from Ballylumford or Moyle exposes other circuits to overload. The worst outage results in a 118% overload on the 275kV circuit to Kells. This could be reconductored to a twin 700 sq mm circuit. The next worst outage results in an overload on the Ballylumford to Hannahstown 275kV circuit.

Coolkeeragh node is also saturated as a generation source. The worse outage is the Coolkeeragh-Magherafelt double circuit tower line which exposes the underlying 110kV network to heavy overloads and can result in voltage collapse. A further single 275kV circuit into Coolkeeragh would be required.

Generation located in the West (Magherafelt and Tyrone) would give rise to overloads on the underlying 110kV network for the outage of some 275kV circuits out of Tandragee and Magherafelt. The re-conductoring of the circuits from Drumnakelly to Tyrone should resolve these issues

11.2.2 Increased Network Traffic

To some degree the worsened voltage problem resulting from increased traffic to Louth depends upon where additional generation is located. At Tandragee, the additional traffic is minimised. If located at Castlereagh the additional generator, de facto, supplies the Belfast load which reduces longer routed inflows. The studies show that generation located at Castlereagh is the least onerous case followed by generation at Tandragee and the worst is when additional generation is located at Islandmagee. While we have been able to solve the load flows, we feel that the margin is too little and we believe that to manage this additional traffic would require an SVC which for the purposes of these studies we have located at Hannahstown. The size of the SVC, varies between 70MVAr and 150MVAr depending on generation location as described above. (We are told that a

150 MVAr on one site, which may not be optimal, would cost about £11m).

11.3 Additional Generation Backing off Supply from Scotland

In previous Sections we relied upon capacity from Scotland through Moyle interconnector to meet load requirements in NI, and to some degree in RoI. In this study, we introduce a further generator in NI and a load at Moyle which effectively reduces the input from Scotland by 400MW. While in summer this may result in a net transfer to Scotland, in winter it is tantamount to NI being self sufficient in capacity without Scotland and yet also able to supply 200MW to RoI.

The most severe issue results from locating generation at Coolkeeragh when a further 275kV Coolkeeragh to Magherafelt circuit would be required. We have also noted that generation located in the west or north will cause a summer case overload on the 110kV circuits from Tandragee to Lisburn if both transformers at Hannahstown are outaged (readers are referred to the opening paragraph of this section in which we drew attention to the need to re-close these circuits during transformer maintenance).

11.4 Renewable and Embedded Generation

The evidence is that most embedded generation between now and 2009 is likely to be in the form of wind farms. Applications and enquires to us indicate that there is a heavy concentration of desire to connect in the north and west of the province, including some units physically located just inside RoI. We anticipate between 200 and 400MW of plant will be wind sourced generation by 2009. Wind farms seem to be becoming bigger in size; while 5MW was the norm a few years ago, connections of over 20MW are now common. It is not the purpose of this statement to discuss the energy management issues, but there is work to do to understand the connection conditions for plant which is intermittent. The interaction between this and other generation and loads, and the resulting impact on the network, will be the subject of much work and debate in the coming years. It is envisaged that by the next matrix analysis we will have a methodology for assessing the network impacts of wind. In this work, we are still hampered by lack of reliable wind generator models.

11.5 Conclusion

The transmission network in Northern Ireland was originally built to a high standard, with many years of capacity, but the effects of over 40 years of load growth, together with electricity markets and open access are starting to stress capability. In particular, the continued increase in concentration of energy in-feed in the east of the province (driven partly by gas availability), the market and reserve traffic to RoI together combine to increase thermal and stability difficulties. It is our view that while we have attempted to facilitate development to the maximum, in the interests of supporting the competitive market, the day is not far removed when we will need to say that substantial investment will be required to support voltage and prevent thermal problems. To get this far, in some cases we have had to seek the support of generators to automatically reduce output or trip off machines during critical network conditions. We are also aware that fault levels are approaching equipment ratings.

Having said that, we believe that the major issue facing the network relates to voltage stability, which is worsened for transfers to RoI and may be further worsened by a high

penetration of wind powered generation.

In thermal terms, we need to restate that the Islandmagee and Coolkeeragh areas are generation saturated but by backing off transfers from Scotland in favour of more generation located in the west (perhaps wind) can give rise to some overloads on the 110kV system.

Apart from that, we have concerns that high penetrations of wind energy could be destabilising, following system disturbances and we plan to bring forward new connection requirements to control the performance of such machines. These will form part of our Grid Code and co-operation will be sought with manufacturers and suppliers of wind farms.

12. <u>DEVELOPMENT OPPORTUNITIES</u>

When NIE considers major generation development projects, there will be a wide range of technical considerations to be taken into account. This will include factors such as System transient stability (the ability of the system to remain in synchronism during a system fault) System dynamic stability (the ability of the system to cope with the loss of a generating unit) and security of supply. The impact of a project on fault level and the ability of equipment to withstand or interrupt fault current may be a significant factor. There is also a range of operating regime considerations, which would need to be assessed when looking at new developments. These would include load factor, maximum and minimum export/import and project lifetimes. It is therefore impossible to be specific about where the best locations are for the development of generation or new major loads. However, from the studies, certain general points can be made as to where there is most spare capacity on the system.

It is simpler to deal separately with three general areas of development: new load, new generation and transmission system developments.

12.1 Opportunities for New Loads

For new loads of significant size, the primary system consideration will be the thermal capabilities of the existing system (local voltage issues may also have to be addressed). System power flows indicate that the 110kV system is heavily loaded in the west. New load would be more easily accommodated in the east, particularly close to the existing generation and the Moyle Interconnector, however an increase in load in the Belfast area might need additional voltage support.

With the exception of Coolkeeragh, the 275kV system is based mainly on a 'ring' structure. This provides a strong 'backbone' to the system and allows for alternative feeding arrangements under outage conditions. Seven Year Statements prior to 2001 noted that the 275kV system had considerable redundancy. In 2001 it was noted that this is no longer true for the circuits leaving Islandmagee. It still remains the case that new load development close to the main part of the 275kV system is less likely to incur 275kV reinforcement costs since the constraints involve only the generation nodes, which have been noted.

The 110kV system is generally more heavily loaded than the 275kV and connection of significant new load at 110kV is likely to require system upgrading. This is especially true in the west of the system and within and around Belfast. New generation is planned for Coolkeeragh and significant load can be accommodated there.

Providing that generation exists at the Coolkeeragh node and with uprating of the Coolkeeragh-Strabane circuits which is an approved development, approximately 100MW transfer can be accommodated to ESB in Donegal. Transfers from ESB to NIE in the North West are very dependent upon the generation profile in Donegal.

In summary, new load can be connected relatively easily near the major generation sources at Coolkeeragh and in the east and adjacent to the Moyle Interconnector. In the west of the system or in and around Belfast on the 110kV system, significant system upgrading may be required to accommodate new large loads.

12.2 **Opportunities for New Generation**

When considering new generation infeeds, the technical factors involved tend to be more complex than with new load developments. However, assuming that the dynamic effects of new generation have been taken into consideration, it is possible to identify general characteristics of the system which would indicate where new generation is most suited.

Adding additional generation depending on location may increase the fault level above rating at a few nodes. For any new generation proposal, it would be important to identify whether there is a requirement for switchgear upgrading as this can add significantly to project costs.

With respect to thermal considerations, significant new generation can be accepted at any of the 275kV nodes except those on Island Magee and around Coolkeeragh.

The power flow diagrams give an indication of the predominant flows and ratings on the 110kV system. Using these, it is possible to identify whether new generation connected to the 110kV system will add to or subtract from the existing system loadings.

It may be important also to consider the impact of possible displacement of generation. Power station location has a significant impact on voltage support both in relation to local networks and to the overall post-fault voltage profile. Generation at Kilroot is particularly beneficial in maintaining post-fault network voltage profiles, since the station has direct connection to Kells, Castlereagh and Tandragee.

In summary, the bias of the existing generation is to the east of the system, particularly when the Moyle Interconnector is operating. New generation is most easily accommodated near the 275kV system. There is a continuing role for generation in the north of the province and some scope in Belfast, although the need for the latter is lessened by Belfast Central Main substation. There is also some scope for generation in the west. The new plant at Coolkeeragh saturates the present capacity at the node.

12.3 Possible Transmission Development Scenarios

As has been highlighted in the previous sections, there are defined areas of the transmission system where system loading is such that little spare transmission capacity exists. These are predominantly in the Island Magee area. The network voltage profile is also of concern for faults in this area.

Retiring generation at Coolkeeragh is being replaced by gas fired plant. Even with a replacement plant there will be periods when generation is unavailable. The decision is whether to carry out network development or find other ways to manage the risk. A special protection scheme has been introduced to shed local load in rare worst-case outage conditions.

The power flow controlled circuit and capacitive support at Enniskillen maintains the voltages at Omagh and Enniskillen within limits, under peak loading conditions. The addition of a third transformer at Enniskillen as an alternative to changing the existing two units for larger transformers has improved both the capacity and voltage at the node. The new bus arrangement at the node improves flexibility for the power flow controlled interconnection with the Republic of Ireland.

The powerflows highlight a problem with loading on the Tandragee to Drumnakelly 110kV circuits. This problem has been addressed by a special protection scheme to be provided before Tyrone Main is commissioned.

110kV re-supply to Creagh is heavily dependant upon the commissioning of the new 275/110kV substation (Tyrone) near to Dungannon. Until that time, a failure in the Kells-Creagh 110kV circuit at periods of high load will result in load shedding in order to avoid unacceptable low voltage conditions. Limited load had been transferred to Creagh and operational measures will be taken to minimise the effects.

12.4 Conclusion

The existing 275kV transmission system is relatively robust with the exception that the increased in-feed requirement at Island Magee can give rise to heavy post-fault loading on this and parallel 110kV networks. The 110kV network towards the west and around Coolkeeragh remains heavily loaded. The introduction of the new Tyrone 275/110kV node at Dungannon will reduce the loading between Tandragee and Dungannon, improve resupply to Creagh, and this will generally stabilise system voltage in the area. New generation at Coolkeeragh creates a generation saturation condition at Coolkeeragh node.

Taking account of the planned developments detailed in Section 5.2, the existing NIE transmission system, as indicated by the power flows, is compliant with planning standards. However, the loading and generation profiles on the system are constantly evolving and it is inevitable that system modifications will be required as changes take place.

List of Tables 1 – 10

Station	Fuel	Contracted	Contract	Earliest
	Used	Capacity MW	Expiry Date	Cancellation
		(at peak)		Date
Kilroot Unit 2 ^[2]	HFO/Coal	260	31-03-2024	1-11-2010
Unit 2 ^[2]	HFO/Coal	260	31-03-2024	1-11-2010
GT 1	Gas Oil	29	31-03-2024	1-11-2010
GT 2	Gas Oil	29	31-03-2024	1-11-2010
B'ford Unit 4 ^[1]	Gas/HFO	$180^{[1]}$	31-03-2012	1-11-2010
Unit 5 ^[1]	Gas/HFO	0 [1]	31-03-2012	1-11-2010
Unit 6 ^[1]	Gas/HFO	[1]	31-03-2012	1-11-2010
GT 1	Gas Oil	58	31-03-2020	1-11-2010
GT 2	Gas Oil	58	31-03-2020	1-11-2010
GTA	Gas/Gas oil	250	31-03-2012	
GTB	Gas/Gas oil	250	31-03-2012	
GTD	Gas/Gas oil	106	31-03-2012	
C'Keer Unit 6	HFO	60	31-03-2003	1-04-2003
Unit 7	HFO	60	31-03-2004	1-04-2004
GT 1	Gas Oil	58	31-03-2020	1-11-2010

Existing Generation - Table1A

[1] During 2002/3, units 4 5 and 6 at Ballylumford were decommissioned and replaced by a new CCGT plant of similar total capacity, The NIE Power Procurement Business (PPB) subsequently contracted with parties to be a virtual power producer. To deliver obligations to ESB, unit 6 at Ballylumford is now retained in addition to the new CCGT. This capacity, reduced to 180MW sent-out, is not counted in the calculation of capacity available for NI. At the same time, Unit 1 at Ballylumford was withdrawn and is replaced until 2012 by Unit 4 at a maximum sent-out capacity of 180MW. Unit 5 can be used only as a replacement for units 4 or 6. Units 2 and 3 were also decommissioned and they were not replaced.

[2] The Kilroot units normally operate with coal firing however their capacity can be increased by oil firing.

Non Fossil Fuel Obligation (NFFO) Capacity – Table 1B
------------------------------	---------------------------

Scheme Name	Technology	Capacity	Contract
Scheme Mame	reemology	DNC kW	Expiry Date
NFFO1			¥ ¥
Rigged Hill	Wind	2142	31-03-2009
Corkey	Wind	2142	31-03-2009
Slieve Rushen	Wind	2086	31-03-2009
Elliott's Hill	Wind	2142	31-03-2009
Bessy Bell	Wind	2098	31-03-2009
Owenreagh	Wind	2054	31-03-2009
Harperstown	Hydro	250	31-03-2009
Benburb	Hydro	75	31-03-2009
Carrickness	Hydro	155	31-03-2009
Park Mills	Hydro	30	31-03-2009
Randalstown	Hydro	500	31-03-2009
Blackwater	Hydro	100	31-03-2009
Sion Mills	Hydro	780	31-03-2009
Oakland's WTW	Hydro	49	31-03-2009
Silent Valley	Hydro	435	31-03-2009
NFFO2			
Lendrum's Bridge	Wind	2141	31-08-2013
Slievenahanaghan	Wind	426	14-11-2012
Blackwater Museum	Biomass	204	30-06-2013
Brook Hall Estate	Biomass	100	31-10-2012
Benburb Small Hydro	Hydro	75	30-04-2012

Additional Renewable Generation – Table 1C

Scheme Name	Technology	Maximum Capacity (MW)	Date Commissioned
Altahullion	Wind	26	April 2003
Lendrums Bridge	Wind	8.2	October 2002
Snugborough	Wind	13.5	October 2003

NORTHERN IRELAND TRANSMISSION SYSTEM

SEVEN YEAR STATEMENT 2003

Transformer Capacity and Loadings at Bulk Supply Points

Location	Total Transformer	Substation Firm			Forecast Lo	ading (MVA	N)			
	Capacity (MVA)	Capacity(MVA)	03/04	04/05	05/06	06/07	07/08	08/09	09/10	NOTES
Antrim	90.0	45.0	42.20	43.05	43.90	44.74	45.59	46.44	47.31	1&3
Ballymena Rural	90.0	45.0	64.05	65.69	40.94	42.22	43.50	44.78	46.07	1&2&7
Ballymena Town	120.0	72.0	44.75	45.13	45.53	45.91	46.29	46.69	47.09	
Ballynahinch	180.0	71.4	57.14	62.28	63.70	65.10	66.51	67.93	69.37	
Banbridge	120.0	55.3	41.97	43.19	44.41	45.62	46.84	48.06	49.30	1
Creagh	120.0	78.0	9.07	9.34	36.03	36.68	37.34	38.02	38.71	4&6
Coleraine	120.0	78.0	44.38	45.28	46.20	47.09	48.00	48.91	49.83	6
Coolkeeragh	180.0	116.6	73.06	74.15	75.26	76.35	77.44	78.55	79.68	
Drumnakelly	180.0	111.2	94.13	96.97	99.83	102.65	105.46	108.29	111.13	
Dungannon	180.0	117.0	91.49	93.68	95.90	98.09	100.29	102.51	104.76	
Eden	90.0	37.4	33.11	33.90	34.70	35.49	36.28	37.08	37.89	3&1
Enniskillen	150.0	117.0	63.67	65.17	66.68	68.18	69.67	71.19	72.72	6&1
Finaghy	90.0	58.5	40.34	41.36	42.52	43.67	44.82	45.98	47.15	
Larne	90.0	58.5	39.62	39.98	40.35	40.71	41.07	41.43	41.81	1
Limavady	47.0	22.5	28.07	28.82	29.57	30.31	31.05	31.81	32.57	1&3
Lisaghmore	90.0	58.5	52.18	52.96	53.76	54.53	55.31	56.11	56.91	6
Lisburn(N+S)	180.0	117.0	61.42	61.93	62.66	63.36	64.07	64.79	65.52	1
Loguestown	90.0	55.3	40.16	40.53	40.91	41.28	41.65	42.03	42.42	
Newry	180.0	74.0	79.91	81.85	83.83	85.80	87.78	89.80	91.86	3
Newtownards	120.0	78.0	0.00	43.82	44.19	44.57	44.95	45.35	45.75	4&6
Norfil	90.0	58.5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
Omagh	120.0	78.0	56.11	57.57	59.04	60.50	61.96	63.44	64.93	6
Rathgael	180.0	85.0	90.70	65.83	65.79	66.42	67.03	67.64	68.25	1&2&7
Rosebank	180.0	111.2	66.07	36.85	36.44	36.26	36.48	36.72	36.98	2
Strabane	90.0	38.0	40.23	41.45	42.68	43.89	45.12	46.35	47.59	3
Waringstown	90.0	58.5	52.57	52.84	53.12	53.38	53.65	53.92	54.21	
West	150.0	267.0	133.01	133.92	134.88	135.80	136.74	137.70	138.70	5
Belfast Central	180.0									
Carnmoney	120.0	60.0	44.65	46.42	48.21	49.52	50.87	52.27	53.73	1
Glengormley	60.0	30.8	15.93	15.71	15.52	15.83	16.15	16.47	16.79	
Cregagh	150.0	78.9	70.88	73.16	75.55	77.98	80.50	83.11	85.83	3
Knock	120.0	59.7	57.99	64.74	65.66	66.56	67.48	68.43	69.40	1&3
Donegall North	150.0	78.0	55.44	55.63	55.85	56.05	56.25	56.46	56.69	1
Donegall South	120.0	78.0	51.98	52.30	52.65	52.97	53.30	53.63	53.98	1

NOTES

1 Transformer exceeds 40years, condition assessment may be required to evaluate rating.

2 Load to be transferred.

3 It is planned to manage capacity issues.

4 New Bulk Supply Point to be commissioned.

5 Both sources are interconnected via 33kV cables

6 Firm capacity based on transformer short term overload capacity may be limited by other network components

7 Load shedding scheme in place.

Substation exceeded Firm Capacity -

NORTHERN IRELAND TRANSMISSION SYSTEM

TABLE 2.2

SEVEN YEAR STATEMENT 2003

Substation Available Capacity

Location	Total Transforme	Substation Firm		Forecasted a	vailable Sul	bstation Cap	pacity Loadi	ing (MVA)		
	Capacity (MVA)	Capacity(MVA)	03/04	04/05	05/06	06/07	07/08	08/09	09/10	NOTES
Antrim	90.0	45.0	2.80	1.95	1.10	0.26	-0.59	-1.44	-2.31	1&3
Ballymena Rural	90.0	45.0	-19.05	-20.69	4.06	2.78	1.50	0.22	-1.07	1&2&7
Ballymena Town	120.0	72.0	27.25	26.87	26.47	26.09	25.71	25.31	24.91	
Ballynahinch	180.0	71.4	14.26	9.12	7.70	6.30	4.89	3.47	2.03	
Banbridge	120.0	55.3	13.34	12.12	10.90	9.69	8.47	7.25	6.01	1
Creagh	120.0	78.0	68.93	68.66	41.97	41.32	40.66	39.98	39.29	4&6
Coleraine	120.0	78.0	33.62	32.72	31.80	30.91	30.00	29.09	28.17	6
Coolkeeragh	180.0	116.6	43.51	42.42	41.31	40.22	39.13	38.02	36.89	
Drumnakelly	180.0	111.2	17.10	14.26	11.40	8.58	5.77	2.94	0.10	
Dungannon	180.0	117.0	25.51	23.32	21.10	18.91	16.71	14.49	12.24	
Eden	90.0	37.4	4.32	3.53	2.73	1.94	1.15	0.35	-0.46	3&1
Enniskillen	150.0	117.0	53.33	24.83	23.32	21.82	20.33	18.81	17.28	6&1
Finaghy	90.0	58.5	18.16	17.14	15.98	14.83	13.68	12.52	11.35	
Larne	90.0	58.5	18.88	18.52	18.15	17.79	17.43	3.57	3.19	1
Limavady	47.0	22.5	-5.57	-6.32	-7.07	-7.81	-8.55	-9.31	-10.07	1&3
Lisaghmore	90.0	58.5	6.32	5.54	4.74	3.97	3.19	2.39	1.59	6
Lisburn(N+S)	180.0	117.0	55.58	55.07	54.34	26.64	25.93	25.21	24.48	1
Loguestown	90.0	55.3	15.15	14.78	14.40	14.03	13.66	13.28	12.89	
Newry	180.0	74.0	-5.91	-7.85	-9.83	-11.80	-13.78	-15.80	-17.86	3
Newtownards	120.0	78.0		34.18	33.81	33.43	33.05	32.65	32.25	4&6
Norfil	90.0	58.5	58.50	58.50	58.50	58.50	58.50	58.50	58.50	
Omagh	120.0	78.0	21.89	20.43	18.96	17.50	16.04	14.56	13.07	6
Rathgael	180.0	85.0	-5.70	19.17	19.21	18.58	17.97	17.36	16.75	1&2&7
Rosebank	180.0	111.2	45.16	74.38	74.79	74.97	74.75	74.51	74.25	2
Strabane	90.0	38.0	-2.23	-3.45	-4.68	-5.89	-7.12	-8.35	-9.59	3
Waringstown	90.0	58.5	5.93	5.66	5.38	5.12	4.85	4.58	4.29	
West	150.0	267.0	133.99	133.08	132.12	131.20	130.26	129.30	128.30	5
Belfast Central	180.0									
Carnmoney	120.0	60.0	15.35	13.58	11.79	10.48	9.13	7.73	6.27	1
Glengormley	60.0		14.87	15.09	15.28	14.97	14.65	14.33	14.01	
Cregagh	150.0	78.9	7.97	5.69	3.30	0.87	-1.65	-4.26	-6.98	3
Knock	120.0	59.7	1.68	-5.07	-5.99	-6.89	-7.81	-8.76	-9.73	1&3
Donegall North	150.0		22.56	22.37	22.15	3.95	3.75	3.54	3.31	1
Donegall South	120.0	78.0	26.02	25.70	25.35	7.03	6.70	6.37	6.02	1

NOTES

1 Transformer exceeds 40 years, condition assessment may be required to evaluate rating.

2 Load to be transferred.

3 It is planned to manage capacity issues.

4 New Bulk Supply Point to be commissioned.

5 Both sources are interconnected via 33kV cables.

6 Firm capacity based on transformer short term overload capacity may be limited by other network components

7 Load shedding scheme in place.

Zero capacity available -

			04 TABLE 3		
BUS NUMBER	NODE NAME	NAME	VOLTAGE (KV)	PLOAD (MW)	QLOAD (Mvar)
70011	ANTR1A	ANTRIM	110	()	(-)
70012	ANTR1B		110		
70030	ANTR3-		33		
70501	BAFDG1	BALLYLUMFORD	13.8		
70502	BAFDG2		13.8		
70503	BAFDG3		13.8		
70504	BAFDG4		15	0	0
70505	BAFDG5		15	0	0
70506	BAFDG6		15	0	0
70507	BAFDG7		11		
70508	BAFDG8		11		
70510	BAFD1-		110	7.4	2.5
70513	BAFD_GA		15	3.7	1.2
70514	BAFD_GB		15	3.7	1.2
70515	BAFD_GC		18	3.7	1.2
70516	BAFD_GD		15	3.7	1.2
70520	BAFD2-		275		
70561	BAFD6P		22		
70562	BAFD6Q		22		
70571	BAFD7P		22		
70572	BAFD7Q		22		
70580	BAFD8-		3.3		
71011	BAME1A	BALLYMENA	110		
71012	BAME1B		110		
71031	BAME3R		33	60.8	20
71032	BAME3T		33	42.5	14
71511	BANB1A	BANBRIDGE	110		
71512	BANB1B	-	110		
71530	BANB3-		33	39.9	13.1
72010	BAVA1-	BALLYVALLAGH	110		
72511	BNCH1A	BALLYNAHINCH	110		
72512	BNCH1B		110		
72530	BNCH3-		33	54.3	17.8
73521	CACO2A	CABLES AT COOLKERRAGH	275	0.110	
73522	CACO2B		275		
74011	CARN1A	CARNMONEY	110		
74012	CARN1B		110		
74030	CARN3-		33	42.4	13.9
74511	CAST1A	CASTLEREAGH	110		1010
74512	CAST1B		110		
74520	CAST2-		275		
74561	CAST6P		22		
74562	CAST6Q		22		
74563	CAST6Q CAST6R		22		
74505 74571	CASTOR CAST7P		22 22		
74571	CAST7P CAST7Q		22		
74572	CAST7Q CAST7R		22		
74575	CENT1A	BELFAST CENTRAL	110		
74711	CENT1A CENT1B		110		
74712	CENT IB CENT 3A			33.9	11.1
74731 74732			33 33	33.9 33.9	11.1
	CENT3B			33.9	11.1
75010	COLE1-	COLERAINE	110	40.0	40.0
75030	COLE3-		33	42.2	13.9
75501	COOLG1-	COOLKERRRAGH	11.8		
75502	COOLG2-		11.8		~
75503	COOLG3-		11.8	0	0
75504	COOLG4-		11.8	0	0
75505	COOLG5-		16		
75506	COOLG6-		16	3.7	1.2
75507	COOLG7-		16	3.7	1.2
75508	COOLG8-		11		
75510	COOL1-	1	110		

	NORTHE	RN IRELAND ELECTRICITY TRAN	SMISSION SYSTEM D	ATA LISTING	
		BUS DATA - WINTER 2003	3/04 TABLE 3		
BUS	NODE	NAME	VOLTAGE	PLOAD	QLOAD
NUMBER	NAME		(KV)	(MW)	(Mvar)
75514	COOL1C		110		
75520	COOL2-		275		
75530	COOL3-		33	69.4	22.8
75561	COOL6P		22		
75562	COOL6Q		22		
75571	COOL7P		22		
75572	COOL7Q		22		
75810 75830	CREA1- CREA3-	CREAGH	110 33	0.6	2.8
75030	CREA3- CREC1A		33 110	8.6	2.0
75911	CREC1A CREC1B		110		
76011	CREG1A		110		
76012	CREG1B		110		
76031	CREG3A		33	23.2	7.6
76032	CREG3B		33	13.9	4.6
76511	DONE1C	DONEGAL	110	10.0	4.0
76512	DONE1B	Boneone	110		
76513	DONE1D		110		
76514	DONE1A		110		
76531	DONE3AS		33	49.4	16.2
76532	DONE3N		33	45.7	15
76533	DONE3BS		33	7	2.3
77010	DRUM1-	DRUMNAKELLY	110		
77030	DRUM3-		33	89.4	29.4
77510	DUNG1-	DUNGANNON	110		
77530	DUNG3-		33	86.9	28.6
78030	DUNM3-		33	22.7	7.5
78511	EDEN1A	EDEN	110		
78512	EDEN1B		110		
78530	EDEN3-		33	31.5	10.3
79010	ENNK1_	ENNISKILLEN	110		
79015	ENNKPFA		110		
79016	ENNKPFB		110	00.5	10.0
79030	ENNK3- FINY1A	FINAGHY	33 110	60.5	19.9
80011 80012	FINY1B	FINAGET	110		
80030	FINY3-		33	38.3	12.6
80511	GLEN1A	GLENGORMLEY	110	50.5	12.0
80512	GLEN1A GLEN1B		110		
80530	GLEN3-		33	15.1	5
81010	HANA1A	HANNAHSTOWN	110		
81020	HANA2A		275		
81061	HANA6P		22		
81062	HANA6Q		22		
81071	HANA7P		22		
81072	HANA7Q		22		
81510	KELS1-	KELLS	110		
81520	KELS2-		275		
81561	KELS6P		22		
81562	KELS6Q		22		
81571	KELS7P		22		
81572	KELS7Q		22		
82001	KILRG1-	KILROOT	17	14.8	4.9
82002	KILRG2-		17	14.8	4.9
82020	KILR2-		275		

	NORTHE	RN IRELAND ELECTRICITY TRA	ANSMISSION SYSTEM D	ATA LISTING	
		BUS DATA - WINTER 20	003/04 TABLE 3		
BUS NUMBER	NODE NAME	NAME	VOLTAGE (KV)	PLOAD (MW)	QLOAD (Mvar)
82511	KNCK1A	KNOCK	110		× /
82512	KNCK1B		110		
82531 82532	KNCK3A KNCK3B		33 33	20.6 20.6	6.8 6.8
83011	LARN1A	LARNE	110		0.0
83012	LARN1B		110	07.0	10.4
83030 83510	LARN3- LIMA1-	LIMAVADY	33 110	37.6	12.4
83530	LIMA3-		33	26.7	8.8
84011	LISB1A	LISBURN	110		
84012 84030	LISB1B LISB3-		110 33	58.4	19.2
84411	LISBS- LSMR1A	LISAGHMORE	110	56.4	19.2
84412	LSMR1B		110		
84430	LSMR3-		33	49.6	16.3
84511 84512	LOGE1A LOGE1B	LOGUESTOWN	110 110		
84512 84530	LOGE1B LOGE3-		33	38.2	12.5
85020	MAGF2-	MAGHERAFELT	275		
86031	MOUN3A	MOUNTPOTTINGER	33	22.1	7.3
86032	MOUN3B		33 275	22.1	7.3
86220 86221	MOYL2- SCOT2-	MOYLE	275		
86511	NEWY1A	NEWRY	110		
86512	NEWY1B		110		
86530 87011	NEWY3- NORF1A	NORFIL	33 110	75.9	25
87011	NORF1A	NORFIL	110		
87030	NORF3-		33	0	0
87510	OMAH1-	OMAGH	110		
87530 88011	OMAH3- RATH1A	RATHGAEL	33 110	53.3	17.5
88012	RATH1A RATH1B	RATHGAEL	110		
88030	RATH3-		33	86.2	28.3
88511	ROSE1A	ROSEBANK	110		
88512 88530	ROSE1B ROSE3-		110 33	62.8	20.6
89030	SKEG3-	SKEGONEILL	33	35.9	11.8
89510	STRA1-	STRABANE	110		
89515	STRPFCA		110		
89516 89530	STRPFCB STRA3-		110 33	38.2	12.6
90011	TAND1A	TANDRAGEE	110	50.2	12.0
90012	TAND1B		110		
90020 90061	TAND2-		275		
90061 90062	TAND6P TAND6Q		22 22		
90063	TAND6R		22		
90071	TAND7P		22		
90072	TAND7Q TAND7R		22 22		
90073 90511	WARN1A	WARINGSTOWN	110		
90512	WARN1B		110		
90530	WARN3-		33	49.9	16.4
91001	WESTG1 WESTG2	PSW	11.8		
91002 91003	WESTG2 WESTG3		11.8 11.8		
91004	WESTG4		11.8	0	0
91005	WESTG5		11.8	0	0
91011	WEST1A		110		
91012 91031	WEST1B WEST3A		110 33	0	0
91031	WEST3B		33	0	0

				ERN IRELAND ELECT						
				BRANCH DATA - V	VINTER 2003/04	TABLE	4			
NOD		CCT	NAME		METERS PU ON 10				NG IN MVA	
FROM	то	NO	FROM	то	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
1981	79016	1	CORRACL 110.0	ENNKPFB 110.0	0.04720	0.10680	0.01020	124	115	106
3581	89516	1	LETRKENY 110.0	STRPFCB 110.0	0.03498	0.07926	0.00759	126		
35231	35232	1	LOUTH5 A 275.0	LOUTH5 B 275.0	0.00000	0.00010	0.00000	1000		1000
35231	90020	1	LOUTH5 A 275.0	TAND2- 275.0 TAND2- 275.0	0.00240	0.02110	0.12690	881	820	710
35232 70011	90020 81510	2	LOUTH5 B 275.0 ANTR1A 110.0	KELS1- 110.0	0.00240	0.02110	0.12690 0.00310	881 103	820 95	
70011	87011	1	ANTR1A 110.0	NORF1A 110.0	0.00080	0.00080	0.00770	84		
70012	81510	1	ANTR1B 110.0	KELS1- 110.0	0.01280	0.02940	0.00310	103		
70012	87012	1	ANTR1B 110.0	NORF1B 110.0	0.00080	0.00080	0.00770	84		
70510 70510	72010 72010	1 2	BAFD1- 110.0 BAFD1- 110.0	BAVA1- 110.0 BAVA1- 110.0	0.02520	0.05760	0.00610	103 103	95 95	82
70510	78511	1	BAFD1- 110.0	EDEN1A 110.0	0.02320	0.05350	0.00480	86		
70510	78512	1	BAFD1- 110.0	EDEN1B 110.0	0.02280	0.05270	0.00480	87	81	70
70520	81020	2	BAFD2- 275.0	HANA2A 275.0	0.00230	0.01960	0.12700	881	820	
70520	81520	1	BAFD2- 275.0	KELS2- 275.0	0.00170	0.01500	0.09040	881	820	710
70520	85020	1	BAFD2- 275.0	MAGF2- 275.0	0.00320	0.02860	0.17200	881	820 820	710
70520 70561	86220 70571	1	BAFD2- 275.0 BAFD6P 22.00	MOYL2- 275.0 BAFD7P 22.00	0.00010	0.00130	0.00810 0.00000	<u>881</u>		
70562	70572	1	BAFD6Q 22.00	BAFD7Q 22.00	0.00000	0.00010	0.00000	0	-	
71011	81510	1	BAME1A 110.0	KELS1- 110.0	0.01540	0.03680	0.00355	124	119	109
71012	81510	1	BAME1B 110.0	KELS1- 110.0	0.01540	0.03680	0.00355	124		109
71511	90011	1	BANB1A 110.0	TAND1A 110.0	0.02360	0.05460	0.00555	103		
71512 72010	90011 81510	1	BANB1B 110.0 BAVA1- 110.0	TAND1A 110.0 KELS1- 110.0	0.02360	0.05460	0.00555 0.00700	103 124		82
72010	81510	2	BAVA1- 110.0	KELS1- 110.0	0.03040	0.07220	0.00700	103	-	82
72010	83011	1	BAVA1- 110.0	LARN1A 110.0	0.00720	0.02340	0.00250	113		
72010	83012	1	BAVA1- 110.0	LARN1B 110.0	0.00720	0.02340	0.00250	113	96	80
72511	74512	1	BNCH1A 110.0	CAST1B 110.0	0.03080	0.07060	0.00740	103		
72512 73521	74512 75520	1	BNCH1B 110.0 CACO2A 275.0	CAST1B 110.0 COOL2- 275.0	0.03080	0.07060	0.00740 0.02280	103 837	95 761	82 76
73521	85020	1	CACO2A 275.0	MAGF2- 275.0	0.00670	0.02400	0.14950	513		412
73522	75520	1	CACO2B 275.0	COOL2- 275.0	0.00010	0.00010	0.01930	837	761	76 ⁻
73522	85020	1	CACO2B 275.0	MAGF2- 275.0	0.00670	0.02400	0.14950	513		412
74011	74511	1	CARN1A 110.0	CAST1A 110.0	0.03710	0.08690	0.00780	87		
74011	78511 74511	1	CARN1A 110.0 CARN1B 110.0	EDEN1A 110.0 CAST1A 110.0	0.01870	0.04390	0.00400	86 87		
74012	78512	1	CARN1B 110.0	EDEN1B 110.0	0.01870	0.04330	0.00400	87	81	70
74030	80530	1	CARN3- 33.00	GLEN3- 33.00	0.03510	0.02070	0.00330	18.8		17.1
74030	80530	2	CARN3- 33.00	GLEN3- 33.00	0.03510	0.02070	0.00330	18.8		17.1
74511	74512	1	CAST1A 110.0	CAST1B 110.0	0.00000	0.00010	0.00000	1000		1000
74511 74511	74512 88511	2	CAST1A 110.0 CAST1A 110.0	CAST1B 110.0 ROSE1A 110.0	0.00000	0.00010	0.00000 0.02545	1000 128		1000 117
74511	88512	1	CASTIA 110.0	ROSE18 110.0	0.00100	0.00180	0.02545	120		117
74512	76011	1	CAST1B 110.0	CREG1A 110.0	0.00120	0.00360	0.06080	145	132	132
74512	76012	1	CAST1B 110.0	CREG1B 110.0	0.00120	0.00360	0.06080	145		132
74512	82511	1	CAST1B 110.0	KNCK1A 110.0	0.00520	0.00440	0.04370	73		
74512 74512	82512 88011	<u>1</u> 1	CAST1B 110.0 CAST1B 110.0	KNCK1B 110.0 RATH1A 110.0	0.00520	0.00440 0.06300	0.04370 0.00660	73 103		
74512	88012	1	CAST1B 110.0	RATH1A 110.0	0.02740	0.06300	0.00660	103		
74520	81020	1	CAST2- 275.0	HANA2A 275.0	0.00090	0.00780	0.05060	881		
74520	81020	2	CAST2- 275.0	HANA2A 275.0	0.00090	0.00790	0.05060	881	820	71(
74520	82020	1	CAST2- 275.0	KILR2- 275.0	0.00340	0.02940	0.17810	881	820	
74520 74561	90020 74571	<u>1</u> 1	CAST2- 275.0 CAST6P 22.00	TAND2- 275.0 CAST7P 22.00	0.00230	0.01910 0.00010	0.12350 0.00000	881 0	820 0	
74561	74571	1	CAST6P 22.00 CAST6Q 22.00	CAST7P 22.00 CAST7Q 22.00	0.00000	0.00010	0.00000	0		
74563	74573	1	CAST6Q 22.00	CAST7Q 22.00	0.00000	0.00010	0.00000	0	-	
74711	76011	1	CENT1A 110.0	CREG1A 110.0	0.00111	0.00462	0.02222	145	144	14
74712	76012	1	CENT1B 110.0	CREG1B 110.0	0.00111	0.00462	0.02222	145		
74731	74732	1	CENT3A 33.00	CENT3B 33.00	0.00010	0.00010	0.00000	1000		
74731 74731	86031 91031	<u>1</u> 1	CENT3A 33.00 CENT3A 33.00	MOUN3A 33.00 WEST3A 33.00	0.01290	0.26890	0.00300 0.00400	33 33		
74731	91031	2	CENT3A 33.00 CENT3A 33.00	WEST3A 33.00 WEST3A 33.00	0.01300	0.26699	0.00400	33		
74732	86032	1	CENT3B 33.00	MOUN3B 33.00	0.01245	0.26890	0.00300	33		
74732	91032	1	CENT3B 33.00	WEST3B 33.00	0.01925	0.26296	0.00400	33	30	3
74732	91032	2 1	CENT3B 33.00 COLE1- 110.0	WEST3B 33.00 COOL1- 110.0	0.01171	0.26530 0.15390	0.00400	33		
75010	75510				0.06700		0.01610	103		8

DBANCH DATA - WINTER 2003/04 TABLE 4 NODE CCT NAME PRAMETERS PLO IN 100/VLA BASE RATING IN MUX 75010 83510 1 COLET- 110.0 LUMAL 110.0 0.02700 0.06610 0.00610 103 9 75010 84511 1 COLET- 110.0 LUGREIA 110.0 0.01600 0.02700 0.00280 103 9 75010 84512 1 COLET- 110.0 LOGREIA 110.0 0.01600 0.00000 0.00010 0.00280 103 9 75510 84511 1 COCL-1 10.0 0.01304 0.02294 0.00315 103 9 75510 84510 1 COCL-1 10.0 0.01304 0.02294 0.00315 103 9 75510 84510 1 COCL-1 10.0 0.01300 0.00580 0.00581 166 15 75510 80510 2 COCL-1 10.0 0.00230 0.00081 166 15 75511	
FROM TO RESISTANCE REACTANCE SUSCEPTANCE WINTER AUTUMI 75010 83510 1 COLEH 110.0 LUNAT 110.0 0.0210 0.06410 0.00210 103.9 9 75010 84511 1 COLEH 110.0 LOCEIA 110.0 0.02200 0.00280 103.9 9 75610 85611 1 COLET 110.0 LOCEIA 110.0 0.02200 0.00280 103.9 9 75610 85611 1 COCLT 110.0 LONENTH 10.0 0.0134 0.02294 0.00315 103.9 9 75616 86610 1 COCL-1 110.0 LSMR1A 110.0 0.01800 0.00716 0.00200 103 9 75616 86610 2 COCL-1 110.0 COREA 0.00200 0.00010 0.00000 0.0016 103.9 9 75616 86610 2 COCL-1 10.0 CREA 10.0 10.0023	
P3010 B3010 COLET- 110.0 LIMAT- 110.0 0.02700 0.06410 0.00610 103 9 75010 84511 1 COLET- 110.0 LOGE1A 110.0 0.01700 0.02700 0.02200 103 9 75510 76514 1 COLET- 110.0 LOGE1B 110.0 0.00000 0.00000 0 103 9 75510 84511 1 COCL- 110.0 LIMAT. 110.0 0.01264 0.0234 0.00315 103 9 75510 84510 1 COCL- 110.0 LIMAT. 110.0 0.01264 0.02315 103 9 75510 85610 1 COCL- 110.0 STR4.1 110.0 0.01260 0.00000 0.0016 0.00000 0 168 15 75510 85610 1 COCL- 120.0 COCLP 22.00 0.00000 0.00010 0.00000 0 14 44 44 75611 1COCL 62.20.0 COCLP 22.00 0.000040 0.00740 144	
T97010 94511 1 COLEF-1100 LOGEIB 1100 0.01160 0.02700 0.00280 1103 9 79510 94512 1 CODEF-1100 LOGEIB 1100 0.01160 0.02700 0.00280 103 9 75510 84411 1 COOL-1 1100 LUMAH-1100 0.01304 0.02894 0.00015 103 9 75510 84412 1 COOL-1 1100 LSMRIA 1100 0.01304 0.02894 0.00015 103 9 75510 86510 1 COOL-1 1100 STRA1-1100 0.01820 0.02610 0.00082 166 15 75510 86510 2 COOL-1 1100 0.01820 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.00001 0.00000 0.000010 0.00000 0.00001	SUMMER
T97010 94511 1 COLEF-1100 LOGEIB 1100 0.01160 0.02700 0.00280 1103 9 79510 94512 1 CODEF-1100 LOGEIB 1100 0.01160 0.02700 0.00280 103 9 75510 84411 1 COOLT-1100 LIANFRA 1100 0.01304 0.02894 0.00015 103 9 75510 84412 1 COOLT-1100 LSMRIA 1100 0.01304 0.02894 0.00015 103 9 75510 86510 1 COOLT-1100 LSMRIA 1100 0.01800 0.02769 0.000016 0.00016 1033 9 75510 86510 2 COOLT-1100 STRA1-1100 0.01820 0.05810 0.00000 0 0.00000 0.00010 0.00000 0.00000 0.000010 0.00000 0.000010 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010	
T9701 84512 1 COLET-1100 LOGERB 1100 0.01160 0.00280 103 9 75510 75514 1 COOLI-1100 LOMOD0 0.0000 0.00000 0.00000 0.00000 0.00000 0.00080 103 9 75510 8411 1 COOLI-1100 LSMR18 1100 0.01304 0.02844 0.00015 103 9 75510 86510 1 COOLI-1100 STRA1-1100 0.01820 0.05660 0.00060 103 9 75510 86510 1 COOLI-1100 STRA1-1100 0.01820 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010 0.00000 0.00010 0.00000 0.00110 0.00000 0.00110 0.00000 0.00110 0.00044 103 9 107511 1 CREC1B 110.0 0.00220 0.0044 103 9 </td <td>-</td>	-
T75510 75514 1 COCL-1 110.0 COM280 0.00010 0 0 775510 84411 1 COCL-1 110.0 LSMR1A 110.0 0.04280 0.00151 1003 9 775510 84412 1 COCL-1 110.0 LSMR1B 110.0 0.01394 0.02594 0.00315 1003 9 75510 85610 1 COCL-1 110.0 STR4A-1 110.0 0.01820 0.005160 0.00168 1666 155 75510 85610 1 COCL6P 22.00 COCL7Q 22.00 0.00000 0.00010 0.00000 0 1444 145 110.0	-
T7510 83510 1 COCL1-110.0 LIMPAT-110.0 0.04280 0.10110 0.002944 0.00315 103 9 75510 84412 1 COCL1-110.0 LSMF18 110.0 0.01304 0.022944 0.00315 103 9 75510 86510 2 COCL1-110.0 STR41-110.0 0.01800 0.007500 0.00168 166 15 75510 85610 2 COCL-1 110.0 D.01800 0.007500 0.00000 0 0 75561 75571 1 COCL62 2.00 COCUC7 2.00 0.00000 0.00000 0 0 75811 75811 10 CPEAT<110.0	
T7510 94411 1 COCL1-110.0 LSMR1B 110.0 0.01304 0.02394 0.00315 103 9 75510 86510 1 COCL1-110.0 STRA1-110.0 0.01820 0.00315 103 9 75510 86510 2 COCL1-110.0 STRA1-110.0 0.01820 0.00510 0.00080 1065 166 15 75561 2 COCLP 2.00 COCL7Q 2.200 0.00000 0.00000 0 0 75811 3 COCL6P 2.200 COCUTQ 2.200 0.000023 0.00088 0.00614 144 144 75911 1 CREA1-110.0 CREC18 110.0 0.00223 0.00088 0.00614 144 144 75911 1 CREA1-110.0 CREC18 110.0 0.00223 0.00088 0.00614 144 144 75912 1 CREA1-110.0 CREC38 33.00 N.00083 0.00670 0.01190 0.00620 50 44 75013 RG33 RG33 RGE33	
T7510 94412 1 COCL1-110.0 STRAI-110.0 0.01381 0.02395 0.00158 100.0 0.01820 0.025160 0.00158 166 157 775510 89510 1 COCL-1 110.0 STRAI-1 110.0 0.01800 0.007500 0.00280 1666 157 775611 SOCL62 20.0 COCL72 22.00 0.00000 0.00010 0.00000 0 0 775611 TSF511 1 CREA1-110.0 COCL72 22.00 0.00000 0.00008 0.000614 1444 145 166 153 163 163 163 163 163 163 163	-
TSFI0 98510 1 COOL1- 110.0 STRA1- 110.0 D01820 D03750 D00820 166 157 75561 2 COOLF 110.0 STRA1- 110.0 D017560 0.00620 166 157 75661 75571 1 COOLGC 22.00 COOLTP 22.00 0.00000 0.00010 0.00000 0 0 75810 75911 CREA1- 110.0 CREC18 110.0 0.00023 0.00088 0.00014 1444 144 75910 75912 75612 1 CREC18 110.0 0.00233 0.00088 0.00014 1444 144 75911 1 CREC18 110.0 0.00233 0.007470 103 9 75912 77613 1 CREC38 33.00 0.00670 0.011190 0.00620 50 44 76031 86031 1 CREC38 33.00 NOLNA8 33.00 0.00670 0.01190 0.00620 <td< td=""><td></td></td<>	
T5651 75571 1 COCLEP 22.00 COCUD 0.00000 0.00010 0.00000 0 75662 75572 1 COCL6C 22.00 COCUT 22.00 0.00000 0.00000 0 0 0 75810 75911 1 CREA1-110.0 CREC18110.0 0.00023 0.00088 0.00614 1444 144 75910 75912 77510 1 CREC1A110.0 RES13 110.0 0.0023 0.00088 0.00614 1444 144 75911 1 CREC1A110.0 RES13 110.0 0.02286 0.00740 103 9 78031 76032 1 CREG3A 30.0 INCINGB 33.00 0.00070 0.01190 0.00620 50 44 76031 86031 1 CREG3B 33.00 INCINGB 33.00 0.02000 0.00400 33 3 70332 82531 CREG3B 33.00 INCINGB 33.00 0.02000 0.00470 0.14550 158 144	-
T*5622 1 COCL&Q 22.00 0.00000 0.00010 0.00000 0 0 75810 75811 1 CREA1-110.0 CREC1B 110.0 0.00023 0.00088 0.00614 144 144 75810 75912 1 CREC1A 110.0 CREC1B 110.0 0.00238 0.00088 0.00614 144 144 75911 81510 1 CREC1A 110.0 CREC1A 110.0 0.00288 0.00748 10.001634 10.01534 10.01534 10.01534 10.03 9 76031 76032 1 CREC3A 33.00 MCN1A3 33.00 0.00670 0.01190 0.00620 50 44 76031 86032 1 CREG3A 33.00 MCN1A3 33.00 0.02000 0.03000 0.00600 33 39 76032 82532 1 CREG3B 33.00 NCN26A 33.00 0.02000 0.03000 0.00400 33 39 76511 91011 DONE1C 110.0 MAV1A110.0 0.00770 0.00470	14
T7810 79911 1 CREAL-110.0 CRECIA 110.0 0.00023 0.00088 0.00614 144 77810 75912 1 CREAL-110.0 CRECIB 110.0 0.0023 0.00088 0.00614 144 144 77811 B1510 1 CRECTB 110.0 DUNG1-110.0 0.02680 0.07478 0.00740 103 9 776311 R6031 1 CREC3A 33.00 DUNG3 33.00 0.00670 0.01190 0.00620 50 44 76031 86031 1 CREG3A 33.00 MCUN3B 33.00 0.00670 0.01190 0.00620 50 44 76032 82531 1 CREG3A 33.00 MCU200 0.03000 0.00400 33 3 76032 82532 1 CREG3B 33.00 NCX5B 33.00 0.02000 0.03000 0.00400 33 3 76511 91011 DONETC<110.0	
75810 75912 1 CRECIA 110.0 CRECIB 110.0 0.00023 0.00088 0.00614 1444 75911 81510 1 CRECIA 110.0 PELSI- 110.0 0.00286 0.07748 0.00740 103 9 75912 1 CRECIS 110.0 DUNCIS 10.00000 0.00631 103 9 76031 76032 1 CRECIS 110.0 DUNCIS 0.00670 0.01190 0.00620 50 44 76031 86032 1 CRECIS 33.00 MOUNIAS 33.00 0.00670 0.01190 0.00620 50 44 76032 82532 1 CRECIS 33.00 MOUNIAS 33.00 0.02200 0.03000 0.00400 33 3 76611 81010 1 DONETC 110.0 HANATA 110.0 0.00770 0.00470 0.14550 158 144 76512 91012 1 DONETB 110.0 HANATA 110.0 0.00560 0.00530 0.006990 82 7 76512 <td></td>	
75911 81510 1 CRECIA 110.0 KELSI- 110.0 0.022699 0.07478 0.00740 1103 99 77601 1 CRECIB 110.0 DUNG1- 110.0 0.06423 0.16951 0.01634 1103 99 77601 1 CRECSA 33.00 CMECSB 33.00 0.00000 0.00000 0.00060 1000 76031 86031 1 CRECSA 33.00 MOLNSA 33.00 0.00670 0.01190 0.00620 50 44 76032 82531 1 CRECSA 33.00 MOLNSA 33.00 0.02000 0.03000 0.00400 33 33 76511 81010 1 DONE1C 110.0 HANA1A 110.0 0.00770 0.00470 0.14550 158 144 76512 81010 1 DONE1B 110.0 HANA1A 110.0 0.00760 0.00470 0.14550 158 144 76512 81012 1 DONE1B 110.0 WESTIA 110.0 0.00560 0.06320 22 7 76513 80011 <td>14</td>	14
75912 77510 1 CREC1B 110.0 DUNG1- 110.0 0.06423 0.16651 0.01634 103 9 76031 76032 1 CREGAA 33.00 CCREG3B 33.00 0.00070 0.01190 0.00620 50 44 76031 86032 1 CREG3A 33.00 MOLNSB 33.00 0.00670 0.01190 0.00620 50 44 76032 82531 1 CREG3B 33.00 MOLNSB 33.00 0.02000 0.03000 0.00400 33 33 76632 82532 1 CREG3B 33.00 KNCK3B 33.00 0.02000 0.03000 0.00400 33 33 76611 81010 1 DONE1C 110.0 HENTIA 110.0 0.00770 0.00470 0.14550 158 14 76612 81010 1 DONE1B 110.0 FINTIA 110.0 0.00530 0.00930 0.22 77 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7	14
76031 76032 1 CREG3A 33.00 CO0000 0.00010 0.00000 1000 1000 76031 86031 1 CREG3A 33.00 MOUNSB 33.00 0.00670 0.01190 0.00620 50 44 76032 82531 1 CREG3B 33.00 KUONSB 33.00 0.00300 0.00400 33 33 76032 82532 1 CREG3B 33.00 KUONSB 33.00 0.02000 0.03000 0.00400 33 33 76511 81010 1 DONETC 110.0 HEST14 110.0 0.00470 0.14550 158 144 76512 81010 1 DONETB 110.0 HEST14 110.0 0.00470 0.14550 158 144 76512 81011 DONETB 110.0 HEST14 110.0 0.00470 0.14560 158 144 76513 80012 1 DONETD 110.0 FEST1B	
76031 86031 1 CREG3A 33.00 MOUNSA 33.00 0.00670 0.01190 0.00620 50 44 76031 86032 1 CREG3A 33.00 MOUNSB 33.00 0.00670 0.01190 0.00620 50 44 76032 82531 1 CREG3B 33.00 KNCK3A 33.00 0.02000 0.03300 0.00400 33 33 76052 82532 1 CREG3B 33.00 KNCK3A 33.00 0.02000 0.03300 0.00400 33 33 76511 81010 1 DONETC 110.0 HENTIA 110.0 0.00670 0.00650 0.06320 82 77 76513 80012 1 DONETB 110.0 FINTIB 110.0 0.00540 0.01240 0.00120 86 8 76533 80012 1 DONETA 110.0 FINTIB 110.0 0.00540 0.01240 0.00120 86 8	8
76031 86032 1 CREG3A 33.00 MOUN3B 33.00 0.00670 0.01190 0.00620 50 44 76032 82532 1 CREG3B 33.00 MOXK3A 33.00 0.02000 0.03000 0.00400 33 33 76511 81010 1 DONE1C 110.0 HAVK3B 33.00 0.02000 0.03000 0.00400 33 33 76511 81010 1 DONE1C 110.0 HAVK3B 33.00 0.00200 0.03000 0.00470 0.14550 158 144 76512 91012 1 DONE1B 110.0 WEST1B 110.0 0.00560 0.00530 0.06990 82 77 76513 80012 1 DONE1B 110.0 FINY1A 110.0 0.00540 0.01240 0.00120 87 8 76531 80012 DONE3AS 33.00 DO00000 0.00100 0.00000 34.2 34.2 77610 </td <td></td>	
76032 82531 1 CREG3B 33.00 NNCK3A 33.00 0.02000 0.03000 0.00400 33 33 76013 82532 1 CREG3B 33.00 NNCK3B 33.00 0.02000 0.03000 0.00400 33 33 76511 91011 DONE1C 110.0 HANA1A 110.0 0.00570 0.00470 0.14550 158 14 76512 81010 1 DONE1B 110.0 HANA1A 110.0 0.00570 0.00470 0.14550 158 14 76512 81010 1 DONE1B 110.0 HANA1A 110.0 0.00560 0.00530 0.06890 82 77 76513 80012 1 DONE1D 110.0 FINY1B 110.0 0.00540 0.01240 0.00120 86 8 76531 76533 1 DONE3AS 33.00 D.00000 0.00100 0.00000 0.44 34.2 34.2 76532	
76032 82532 1 CREG3B 33.00 INXX3B 33.00 0.02000 0.03000 0.00400 33 33 76511 81010 1 DONETC 110.0 HANA1A 110.0 0.00170 0.04470 0.14550 158 144 76512 81010 1 DONETB 110.0 HANA1A 110.0 0.00570 0.00470 0.14550 158 144 76512 81010 1 DONETB 110.0 HANA1A 110.0 0.00560 0.00530 0.00800 82 77 76513 80012 1 DONETB 110.0 FINYTB 110.0 0.00540 0.01240 0.00120 86 88 76533 1 DONE3AS 33.00 DONE3BS 3.00 0.00000 0.00100 0.00000 3.42 3.42 77010 77510 1 DRUMT- 110.0 DOME3BS 3.00 0.00100 0.00000 3.42 3.42 77010 </td <td></td>	
76511 81010 1 DONE1C 110.0 H4NA1A 110.0 0.00170 0.00470 0.14550 158 144 76511 91011 1 DONE1B 110.0 HESTIA 110.0 0.00570 0.00530 0.06320 82 77 76512 81010 1 DONE1B 110.0 HANA1A 110.0 0.00560 0.00530 0.06690 82 77 76513 80012 1 DONE1B 110.0 FINYIB 110.0 0.00560 0.01240 0.00120 87 8 76513 80011 1 DONE3AS 33.00 DONE3BS 33.00 0.00000 0.00140 0.00120 86 80 76532 76533 1 DONE3AS 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.1 77010 77510 2 DRUM1- 110.0 DUNG1- 110.0 0.00460 0.01480 0.00160 113 9 77010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 1	-
76511 91011 1 DONE1C 110.0 WESTIA 110.0 0.00570 0.00550 0.06320 82 77 76512 81010 1 DONE1B 110.0 HANAIA 110.0 0.00570 0.00630 0.06090 82 77 76513 80012 1 DONE1B 110.0 FINY1B 110.0 0.00540 0.01240 0.00120 87 8 76514 80011 1 DONE3AS 33.00 D.000540 0.01240 0.00120 86 8 76533 1 DONE3AS 33.00 DONE3BS 33.00 0.00000 0.00000 0.00000 0.00000 34.2 34.2 76532 76533 2 DONE3NS 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.2 77010 77510 1 DRUM1- 110.0 D.04680 0.09450 0.00160 113 9 77010 90011 2	
76512 81010 1 DONE1B 110.0 HANA1A 110.0 0.00170 0.00470 0.14550 158 144 76512 91012 1 DONE1B 110.0 WESTIB 110.0 0.00560 0.00630 0.06090 82 77 76513 80011 DONE1A 110.0 FINY1B 110.0 0.00540 0.01240 0.00120 86 88 76531 76533 1 DONE3AS 33.00 DON0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 34.2 34.3 76532 76533 1 DONE3N 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.3 77010 77510 1 DRUM1- 110.0 DUNG1- 110.0 0.00460 0.00480 0.00970 103 9 77010 77011 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113<	
76612 91012 1 DONETB 110.0 WEST1B 110.0 0.00560 0.00530 0.06090 82 77 76513 80012 1 DONETD 110.0 FINY1B 110.0 0.00540 0.01240 0.00120 87 8 76513 80011 1 DONETA 110.0 FINY1A 110.0 0.00540 0.01240 0.00120 86 8 76533 1 DONE3AS 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.3 76532 76533 2 DONE3N 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.3 77010 77510 1 DRUM1- 110.0 DUNG1- 110.0 0.03700 0.08600 0.00880 103 9 77010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.0480 0.01480 0.00160 113 9	
76513 80012 1 DONETD 110.0 FINYIB 110.0 0.00540 0.01240 0.00120 87 8 76514 80011 1 DONETA 110.0 FINYIA 110.0 0.00540 0.01240 0.00120 86 8 76531 76533 1 DONE3AS 33.00 DONE3BS 0.00000 0.00100 0.00000 0	
76514 80011 1 DONE1A 110.0 FINY1A 110.0 0.00540 0.01240 0.00120 86 88 76531 76533 1 DONE3AS 33.00 DONE3BS 33.00 0.00000 0.00000 0.00000 0.00000 34.2 34.3 76532 76533 2 DONE3N 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.3 77010 77510 1 DRUM1- 110.0 DUNG1- 110.0 0.03700 0.08800 10.03 9 77010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 9 77010 90011 2 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 9 77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00550 0.01520 0.00140 119 100 77510 87510	7
76531 76533 1 DONE3AS 33.00 DONE3BS 33.00 0.00000 0.00010 0.00000 34.2 34.2 76532 76533 1 DONE3N 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.2 76532 76533 2 DONE3N 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.3 77010 77510 1 DRUM1- 110.0 DUNG1- 110.0 0.03700 0.08600 0.00880 103 99 77010 77510 2 DRUM1- 110.0 DUNG1- 110.0 0.04480 0.00160 113 99 77010 90011 2 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 97011 DUNG1- 110.0 OMAH1- 110.0 0.0550 0.01520 0.01400 113 91 114	
76532 76533 2 DONE3N 33.00 DONE3BS 33.00 0.00000 0.00100 0.00000 34.2 34.3 77010 77510 1 DRUM1- 110.0 DUNG1- 110.0 0.03700 0.08800 0.00880 103 99 77010 90011 1 DRUM1- 110.0 DUNG1- 110.0 0.04480 0.09450 0.00970 103 99 77010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00140 119 100 77510 87510 1 DUNG1- 110.0 OMAH1- 110.0 0.05832 0.13881 0.01325 124 111 78030 89030 2 DUNM3- 33.00 SKEG3- 33.00 0.01200 0.00300 33 33 <t< td=""><td></td></t<>	
T7010 T7510 1 DRUM1- 110.0 DUNG1- 110.0 0.03700 0.08600 0.00880 103 99 T7010 T7510 2 DRUM1- 110.0 DUNG1- 110.0 0.04080 0.09450 0.00970 103 99 T7010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 T7010 90011 2 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 T7010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 T7010 9011 3 DRUM1- 110.0 TAND1A 110.0 0.00550 0.0120 0.00140 119 100 T7510 87510 1 DUING1- 110.0 OWH1- 110.0 0.06832 0.13881 0.01325 124 111 T8030 89030 1 DUIN3- 33.00 SKEG3- 33.00 0.01270 0.00550 34.4 31.1 </td <td>34.</td>	34.
77010 77510 2 DRUM1- 110.0 DUING1- 110.0 0.04080 0.09450 0.00970 103 99 77010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 2 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00550 0.0120 0.00140 119 10 77510 87510 2 DUNG1- 110.0 OMAH1- 110.0 0.05218 0.12421 0.01186 124 111 78030 89030 1 DUNM3- 33.00 SKEG3- 33.00 0.01270 0.00550 34.4 31.3 78030 91031 1 DUNM3- 33.00 WEST3A 33.00 0.02130 0.27090 0.00300 33 33 </td <td>34.</td>	34.
77010 90011 1 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 2 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00550 0.01520 0.00140 119 100 77510 87510 1 DUNG1- 110.0 OMAH1- 110.0 0.05218 0.12421 0.01186 124 111 77510 87510 2 DUNG1- 110.0 OMAH1- 110.0 0.05832 0.13881 0.01325 124 111 78030 89030 1 DUNM3- 33.00 SKEG3- 33.00 0.01700 0.00550 34.4 31.2 78030 91031 1 DUNM3- 33.00 WEST3A 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3- 33.00 WEST3B 33.00 0.022030 0.27090 0.00300 33 33	
77010 90011 2 DRUM1- 110.0 TAND1A 110.0 0.00460 0.01480 0.00160 113 99 77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00550 0.01520 0.00140 119 100 77510 87510 1 DUING1- 110.0 OMAH1- 110.0 0.05218 0.12421 0.01186 124 111 77510 87510 2 DUING1- 110.0 OMAH1- 110.0 0.05832 0.13881 0.01325 124 111 78030 89030 1 DUING3- 33.00 SKEG3- 33.00 0.01200 0.00400 30.8 22 78030 99032 2 DUINM3- 33.00 SKEG3- 33.00 0.02120 0.27190 0.00300 33 33 78030 91031 1 DUINM3- 33.00 WEST3B 33.00 0.02203 0.27090 0.00300 33 33	
77010 90011 3 DRUM1- 110.0 TAND1A 110.0 0.00550 0.01520 0.00140 119 100 77510 87510 1 DUNG1- 110.0 OMAH1- 110.0 0.05218 0.12421 0.01186 124 111 77510 87510 2 DUNG1- 110.0 OMAH1- 110.0 0.05832 0.13881 0.01325 124 111 78030 89030 1 DUNM3- 33.00 SKEG3- 33.00 0.01780 0.01200 0.00400 30.8 22 78030 99031 1 DUNM3- 33.00 SKEG3- 33.00 0.01200 0.00400 33.8 33.3 78030 91031 1 DUNM3- 33.00 WEST3B 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3- 33.00 WEST3B 33.00 0.21200 0.01180 103 99 79010 <td></td>	
77510 87510 1 DUNG1- 110.0 OMAH1- 110.0 0.05218 0.12421 0.01186 124 111 77510 87510 2 DUNG1- 110.0 OMAH1- 110.0 0.05832 0.13881 0.01325 124 111 78030 89030 1 DUNM3- 33.00 SKEG3- 33.00 0.01780 0.01200 0.00400 30.8 22 78030 89030 2 DUNM3- 33.00 SKEG3- 33.00 0.01120 0.00550 34.4 31.3 78030 91031 1 DUNM3- 33.00 WEST3A 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3- 33.00 WEST3B 33.00 0.02120 0.27190 0.00300 33 33 79010 87510 1 ENK1_ 110.0 0.04880 0.11200 0.01180 103 99 3011 81010 1	
77510 87510 2 DUNG1-110.0 OMAH1-110.0 0.05832 0.13881 0.01325 124 111 78030 89030 1 DUNM3-33.00 SKEG3-33.00 0.01780 0.01200 0.00400 30.8 22 78030 89030 2 DUNM3-33.00 SKEG3-33.00 0.01780 0.01200 0.00400 30.8 22 78030 91031 1 DUNM3-33.00 SKEG3-33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3A 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3B 3.00 0.02120 0.27190 0.00300 33 33 79010 87510 2 ENNK1_110.0 DMAH1-110.0 0.04880 0.11200 0.01180 103 99 80011 81010 1 FINY1A 110.0 HANA1A 110.0 0.00300 <t< td=""><td></td></t<>	
78030 89030 1 DUNM3-33.00 SKEG3-33.00 0.01780 0.01200 0.00400 30.8 22 78030 89030 2 DUNM3-33.00 SKEG3-33.00 0.01350 0.01270 0.00550 34.4 31.3 78030 91031 1 DUNM3-33.00 WEST3A 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3B 33.00 0.02030 0.27090 0.00300 33 33 78010 87510 1 ENNK1_110.0 OMAH1-110.0 0.04880 0.11200 0.01180 103 99 79010 87510 2 ENNK1_110.0 OMAH1-110.0 0.04880 0.11200 0.01180 103 99 80011 81010 1 FINY1A 110.0 OMAH1-110.0 0.00100 0.00300 0.05067 144 14 80012 81010 1 FINY1B 110.0 HANA1A 110.0 0.	
78030 89030 2 DUNM3-33.00 SKEG3-33.00 0.01350 0.01270 0.00550 34.4 31.3 78030 91031 1 DUNM3-33.00 WEST3A 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3B 33.00 0.02030 0.27090 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3B 33.00 0.02030 0.27090 0.00300 33 33 79010 87510 1 ENNK1	
78030 91031 1 DUNM3-33.00 WEST3A 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3B 33.00 0.02120 0.27190 0.00300 33 33 78030 91032 1 DUNM3-33.00 WEST3B 33.00 0.02030 0.27090 0.00300 33 33 79010 87510 1 ENNK1_110.0 OMAH1-110.0 0.04880 0.11200 0.01180 103 99 80011 81010 1 FINY1A 110.0 OMAH1-110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 GLEN1A 110.0 KELS1-110.0 0.00300 0.05067 144 144 80512 81510 1 GLEN1A 110.0 KELS	
78030 91032 1 DUNM3-33.00 WEST3B 33.00 0.02030 0.27090 0.00300 33 33 79010 87510 1 ENNK1_ 110.0 OMAH1- 110.0 0.04880 0.11200 0.01180 103 99 79010 87510 2 ENNK1_ 110.0 OMAH1- 110.0 0.04880 0.11200 0.01180 103 99 80011 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 FINY1B 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 GLEN1A 110.0 KELS1- 110.0 0.00300 0.05067 144 144 80511 81501 1 GLEN1A 110.0 KELS1- 110.0 0.003040 0.05067 144 144 80512 81510<	
79010 87510 1 ENNK1_ 110.0 OMAH1- 110.0 0.04880 0.11200 0.01180 103 99 79010 87510 2 ENNK1_ 110.0 OMAH1- 110.0 0.04880 0.11200 0.01180 103 99 80011 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 GLEN1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80511 81510 1 GLEN1A 110.0 KELS1- 10.0 0.03040 0.05767 144 144 80512 81510 1 GLEN1A 110.0 KELS1- 110.0 0.03040 0.05767 144 144 80512 81510 1 GLEN1A	
79010 87510 2 ENNK1 110.0 OMAH1- 110.0 0.04880 0.11200 0.01180 103 99 80011 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80512 81510 1 GLEN1A 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 80512 81510 1 GLEN1B 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 81010 84011 1 HANA1A 110.0 0.03040 0.06780 0.03040 90 88 81010 84011 1 HANA1A 110.0 LISB1A 110.0 0.00894 0.02792 0.01908 100 93 81010	8
80011 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 FINY1A 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80012 81010 1 FINY1B 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80511 81510 1 GLEN1A 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 80512 81510 1 GLEN1B 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 81010 84011 1 HANA1A 110.0 0.00394 0.02792 0.01908 100 93 81010 84012 1 HANA1A 110.0 LISB1B 110.0 0.01000 0.02723 0.01907 103 93 81020	
80012 81010 1 FINY1B 110.0 HANA1A 110.0 0.00100 0.00300 0.05067 144 144 80511 81510 1 GLEN1A 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 80512 81510 1 GLEN1B 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 81010 84011 1 HANA1A 110.0 LISB1A 110.0 0.00894 0.02792 0.01908 100 93 81010 84012 1 HANA1A 110.0 LISB1B 110.0 0.01000 0.02723 0.01907 103 93 81020 86220 1 HANA2A 275.0 MOYL2- 275.0 0.00220 0.01880 0.12210 881 822 81061 81071 1 HANA6P 22.00 HANA7P 22.00 0.00000 0.00010 0.00000 0	
80511 81510 1 GLENIA 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 80512 81510 1 GLENIB 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 81010 84011 1 HANAIA 110.0 LISBIA 110.0 0.00894 0.02792 0.01908 100 93 81010 84012 1 HANAIA 110.0 LISBIB 110.0 0.01000 0.02723 0.01907 103 93 81020 86220 1 HANA2A 275.0 MOYL2- 275.0 0.00020 0.01880 0.12210 881 820 81061 81071 1 HANA6P 22.00 HANA7P 22.00 0.00000 0.00010 0.00000 0 0	
80512 81510 1 GLEN1B 110.0 KELS1- 110.0 0.03040 0.06780 0.03040 90 88 81010 84011 1 HANA1A 110.0 LISB1A 110.0 0.00894 0.02792 0.01908 100 93 81010 84012 1 HANA1A 110.0 LISB1B 110.0 0.01000 0.02723 0.01907 103 93 81020 86220 1 HANA2A 275.0 MOYL2- 275.0 0.00220 0.01880 0.12210 881 821 81061 81071 1 HANA6P 22.00 HANA7P 22.00 0.00000 0.00010 0.00000 0	
81010 84011 1 HANA1A 110.0 LISB1A 110.0 0.00894 0.02792 0.01908 100 99 81010 84012 1 HANA1A 110.0 LISB1B 110.0 0.01000 0.02723 0.01907 103 99 81020 86220 1 HANA2A 275.0 MOYL2- 275.0 0.00220 0.01880 0.12210 881 820 81061 81071 1 HANA6P 22.00 HANA7P 22.00 0.00000 0.00010 0.00000 0 0	
81020 86220 1 HANA2A 275.0 0.00220 0.01880 0.12210 881 822 81061 81071 1 HANA6P 22.00 HANA7P 22.00 0.00000 0.00010 0.00000 0 0	
81061 81071 1 HANA6P 22.00 HANA7P 22.00 0.00000 0.00010 0.00000 0	
81062 81072 1 HANA6Q 22.00 HANA7Q 22.00 0.00000 0.00010 0.00000 0 (
81520 82020 1 KELS2- 275.0 KILR2- 275.0 0.00150 0.01280 0.07690 881 82	
81520 82020 2 KELS2- 275.0 KILR2- 275.0 0.00150 0.01280 0.07690 881 82	
81520 85020 1 KELS2- 275.0 MAGF2- 275.0 0.00150 0.01350 0.08140 881 82	
81561 81571 1 KELS6P 22.00 KELS7P 22.00 0.00000 0.00010 0.00000 0 (
81562 81572 1 KELS6Q 22.00 KELS7Q 22.00 0.00000 0.00010 0.00000 0 0	
82020 90020 1 KILR2- 275.0 TAND2- 275.0 0.00410 0.03540 0.21490 881 82	
82531 82532 1 KNCK3A 33.00 KNCK3B 33.00 0.00000 0.00010 0.00000 1000 1000	
84011 90011 1 LISB1A 110.0 TAND1A 110.0 0.03910 0.10850 0.01040 103 99 84012 90011 1 LISB1B 110.0 TAND1A 110.0 0.03370 0.10600 0.00940 100 99	

	NORTHERN IRELAND ELECTRICITY TRANSMISSION SYSTEM DATA LISTING										
	BRANCH DATA - WINTER 2003/04 TABLE 4										
NO	DE	ССТ	NAME	PARAME	TERS PU ON 10	0MVA BASE		RATI	NG IN MVA		
FROM	TO	NO	FROM	ТО	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER	
85020	90020	1	MAGF2- 275.0	TAND2- 275.0	0.00260	0.02150	0.13950	881	820	710	
85020	90020	2	MAGF2- 275.0	TAND2- 275.0	0.00260	0.02150	0.13950	881	820	710	
86031	86032	1	MOUNBA 33.00	MOUN3B 33.00	0.00000	0.00010	0.00000	1000	1000	1000	
86511	90011	1	NEWY1A 110.0	TAND1A 110.0	0.03480	0.07960	0.00840	103	95	82	
86512	90011	1	NEWY1B 110.0	TAND1A 110.0	0.03480	0.07960	0.00840	103	95	82	
87510	89510	1	OMAH1- 110.0	STRA1- 110.0	0.05150	0.12250	0.01170	103	95	82	
87510	89510	2	OMAH1- 110.0	STRA1- 110.0	0.05320	0.12660	0.01210	103	95	82	
89030	91031	1	SKEG3- 33.00	WEST3A 33.00	0.02600	0.26760	0.00300	33	33	30	
89030	91032	1	SKEG3- 33.00	WEST3B 33.00	0.01820	0.26880	0.00300	33	33	30	
90011	90012	1	TAND1A 110.0	TAND1B 110.0	0.00000	0.00010	0.00000	1000	1000	1000	
90012	90511	1	TAND1B 110.0	WARN1A 110.0	0.01280	0.04180	0.00440	113	96	80	
90012	90512	1	TAND1B 110.0	WARN1B 110.0	0.01280	0.04180	0.00440	113	96	80	
90061	90071	1	TAND6P 22.00	TAND7P 22.00	0.00000	0.00010	0.00000	0	0	0	
90062	90072	1	TAND6Q 22.00	TAND7Q 22.00	0.00000	0.00010	0.00000	0	0	0	
90063	90073	1	TAND6R 22.00	TAND7R 22.00	0.00000	0.00010	0.00000	0	0	0	
91031	91032	1	WEST3A 33.00	WEST3B 33.00	0.00400	0.21260	0.00000	38	38	38	

BRANCH DATA CHANGES 2003/04 - 2009/10 WINTER TABLE 5

2003/04 CIRCUITS DELETED

NC	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NG IN MVA	
FROM	TO	NO	FROM	TO	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
75510	89510	3	COOL1- 110.0	STRA1- 110.0	0.04000	0.09190	0.00970	103	95	82
77510	81510	1	DUNG1- 110.0	KELS1- 110.0	0.08470	0.19950	0.01960	103	95	82

2003/04 CIRCUITS ADDED

NO	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NGINMVA	
FROM	TO	NO	FROM	TO	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
75810	75911	1	CREA1- 110.0	CREC1A 110.0	0.00023	0.00088	0.00614	144	144	144
75810	75912	1	CREA1- 110.0	CREC1B 110.0	0.00023	0.00088	0.00614	144	144	144
75911	81510	1	CREC1A 110.0	KELS1- 110.0	0.02869	0.07478	0.00740	103	95	82
75912	77510	1	CREC1B 110.0	DUNG1- 110.0	0.06423	0.16951	0.01634	103	95	82

2004/05 CIRCUITS ADDED

NO	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NGINMVA	
FROM	TO	NO	FROM	ТО	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
74512	86311	1	CAST1B 110.0	NARD1A 110.0	0.02530	0.05880	0.04640	103	95	82
74512	86312	1	CAST1B 110.0	NARD1B 110.0	0.02530	0.05880	0.04640	103	95	82

2005/06 CIRCUITS DELETED

NO	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NGINMVA	
FROM	TO	NO	FROM	TO	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
85020	90020	2	MAGF2- 275.0	TAND2- 275.0	0.00260	0.02150	0.13950	881	820	710

2005/06 CIRCUITS ADDED

NC	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NG IN MVA	
FROM	TO	NO	FROM	ТО	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
77510	90310	1	DUNG1- 110.0	TYRN1- 110.0	0.00552	0.02186	0.00214	166	158	166
90020	90320	1	TAND2- 275.0	TYRN2- 275.0	0.00130	0.01075	0.06975	881	820	710
90361	90371	1	TYRN6P 22.00	TYRN7P 22.00	0.00000	0.00010	0.00000	0	0	0

2008/09 CIRCUITS DELETED

NC	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NGINMVA	
FROM	TO	NO	FROM	TO	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
75912	77510	1	CREC1B 110.0	DUNG1- 110.0	0.06423	0.16951	0.01634	103	95	82
77010	77510	1	DRUM1- 110.0	DUNG1- 110.0	0.03700	0.08600	0.00880	103	95	82
77010	77510	2	DRUM1- 110.0	DUNG1- 110.0	0.04080	0.09450	0.00970	103	95	82
77510	87510	1	DUNG1- 110.0	OMAH1- 110.0	0.05218	0.12421	0.01186	124	119	109
77510	90310	1	DUNG1- 110.0	TYRN1- 110.0	0.00552	0.02186	0.00214	166	158	166

2008/09 CIRCUITS ADDED

NC	DE	CCT	NAME	PARAME	TERS PU ON 10	OMVA BASE		RATI	NG IN MVA	
FROM	TO	NO	FROM	ТО	RESISTANCE	REACTANCE	SUSCEPTANCE	WINTER	AUTUMN	SUMMER
75912	90310		CREC1B 110.0	TYRN1- 110.0	0.05639	0.14883	0.01435	103	95	82
77010	90310	2	DRUM1- 110.0	TYRN1- 110.0	0.03393	0.07859	0.00807	103	95	82
77010	90311	1	DRUM1- 110.0	Tyrturn1 110.0	0.02327	0.05409	0.00554	103	95	82
77510	90312	1	DUNG1- 110.0	Tyrturn2 110.0	0.01373	0.03191	0.00326	103	95	82
77511	87510	1	Dung1 110.0	OMAH1- 110.0	0.05218	0.12421	0.01186	124	119	109
77511	90310	1	Dung1 110.0	TYRN1- 110.0	0.00387	0.01454	0.00623	166	158	144
77512	90310	2	Dung2 110.0	TYRN1- 110.0	0.00784	0.02068	0.00199	103	95	82
77513	90310	3	Dung3 110.0	TYRN1- 110.0	0.00669	0.01591	0.00152	103	95	82
90310	90311	1	TYRN1- 110.0	Tyrturn1 110.0	0.00205	0.00572	0.02585	108	108	108
90310	90312	1	TYRN1- 110.0	Tyrturn2 110.0	0.00205	0.00572	0.02585	108	108	108
90362	90372	1	TYRN6Q 22.00	TYRN7Q 22.00	0.00000	0.00010	0.00000	0	0	0

TRANSFORMER DATA - WINTER 2003/04 TABLE 6

1	VODE	сст	NAME		PARAMETERS PU O	N 100MVA BASE		RATING IN MVA		UPPER PU	LOWER PU	NUMBER OF
FROM	то	NO	FROM	то	RESISTANCE	REACTANCE	WINTER	AUTUMN	SUMMER	OFF NOMINAL RATIO	OFF NOMINAL RATIO	TAP POSITIONS
3522	35231	1	LOUTH 220.0	LOUTH5 A 275.0	0.0000	0.0303	300	300	300	1.157	0.850	23
3522	35231	2	LOUTH 220.0	LOUTH5 A 275.0	0.0000	0.0303	300	300	300	1.157	0.850	23
3522	35232	3	LOUTH 220.0	LOUTH5 B 275.0	0.0000	0.0152	600	600	600	1.157	0.850	23
70011	70030	1	ANTR1A 110.0	ANTR3- 33.00	0.0268	0.4440	22.5	22.5	22.5	1.100	0.900	15
70011	70030	2	ANTR1A 110.0	ANTR3- 33.00	0.0268	0.4440	22.5	22.5	22.5	1.100	0.900	15
70012	70030	1	ANTR1B 110.0	ANTR3- 33.00	0.0268	0.4440	22.5	22.5	22.5	1.100	0.900	15
70012	70030	2	ANTR1B 110.0	ANTR3- 33.00	0.0268	0.4440	22.5	22.5	22.5	1.100	0.900	15
70501	70520	1	BAFDG1 13.80	BAFD2- 275.0	0.0024	0.1035	145	145	145	1.224	1.002	15
70502	70520	1	BAFDG2 13.80	BAFD2- 275.0	0.0024	0.1035	145	145	145	1.224	1.002	15
70503	70520	1	BAFDG3 13.80	BAFD2- 275.0	0.0024	0.1035	145	145	145	1.224	1.002	15
70504	70520	1	BAFDG4 15.00	BAFD2- 275.0	0.0012	0.0729	240	240	240	1.248	1.021	15
70505	70520	1	BAFDG5 15.00	BAFD2- 275.0	0.0012	0.0729	240	240	240	1.248	1.021	15
70506	70520	1	BAFDG6 15.00	BAFD2- 275.0	0.0012	0.0729	240	240	240	1.248	1.021	15
70507	70510	1	BAFDG7 11.00	BAFD1- 110.0	0.0068	0.2000	75	75	75	1.200	0.982	15
70508	70510	1	BAFDG8 11.00	BAFD1- 110.0	0.0068	0.2000	75	75	75	1.200	0.982	15
70510	70516	1	BAFD1- 110.0	BAFD_GD 15.00	0.0037	0.1326	135	135	135	1.175	0.875	25
70510	70580	1	BAFD1- 110.0	BAFD8- 3.300	0.0081	0.2867	75	75	75	1.500	0.510	159
70513	70520	1	BAFD_GA 15.00	BAFD2- 275.0	0.0023	0.0816	217	217	217	1.171	0.866	25
70514	70520	1	BAFD_GB 15.00	BAFD2- 275.0	0.0023	0.0816	217	217	217	1.171	0.866	25
70515	70520	1	BAFD_GC 18.00	BAFD2- 275.0	0.0020	0.0712	250	250	250	1.171	0.866	25
71011	71031	1	BAME1A 110.0	BAME3R 33.00	0.0132	0.2384	45	45	45	1.100	0.850	16
71011	71032	1	BAME1A 110.0	BAME3T 33.00	0.0116	0.2780	45	45	45	1.100	0.800	19
71012	71031	1	BAME1B 110.0	BAME3R 33.00	0.0132	0.2384	45	45	45	1.100	0.850	16
71012	71032	1	BAME1B 110.0	BAME3T 33.00	0.0116	0.2780	45	45	45	1.100	0.800	19
71511	71530	1	BANB1A 110.0	BANB3- 33.00	0.0168	0.4102	30	30	30	1.100	0.900	15
71511	71530	2	BANB1A 110.0	BANB3- 33.00	0.0168	0.4102	30	30	30	1.100	0.900	15
71512	71530	1	BANB1B 110.0	BANB3- 33.00	0.0168	0.4102	30	30	30	1.100	0.900	15
71512	71530	2	BANB1B 110.0	BANB3- 33.00	0.0168	0.4102	30	30	30	1.100	0.900	15

						NO	RTHERN IRE	ELAND E	ELECTRI		SMISSION S	YSTEM DA	TA LISTI	ING	ì			
							TRANS	SFORME	ER DATA	- WINTER 2	003/04	TABI	_E 6					
NOL	DE CCT	NA	ME			PARAME	TERS PU OI	N 100M\	/A BASE		RATING IN	MVA			UPPER PU	LOWER P	J	NUMBER OF
FROM T	O NO	FR	ОМ	ТС	2	RESIS	TANCE	REACT	ANCE	WINTER	AUTUMI	N SU	MMER	OF	FF NOMINAL RATIO	OFF NOMINAL	RATIO	TAP POSITIONS
70544	70500	4		10.0		22.00	0.000	0	0.1	2440	00	00		20	1 100	0.000		10
72511	72530		BNCH1A 11		BNCH3-		0.003	-		2419	90	90		90	1.100	0.800		19
72512	72530		BNCH1B 11		BNCH3-		0.003	-	_	2419	90	90		90	1.100	0.800		19
74011 74012	74030 74030		CARN1A 11 CARN1B 11		CARN3-		0.011		-	2854 5956	60 30	60 30		60 20	<u> </u>	0.850		19 19
74012	74030				CARN3-		0.030	-		5956 5956				30	1.150	0.850		-
	74030		CARN1B 11		CARN3-			-	-		30 90	30 90		30 90		0.850		<u>19</u> 19
74711 74712	74731		CENTIA 11		CENT3A		0.006	-		2424					1.150			19
			CENT1B 11		CENT3B		0.006			2424	90	90		90	1.150	0.850		
75010	75030		COLE1- 110		COLE3-		0.007			2500	60 60	60		60 80	1.100	0.800		19
75010	75030		COLE1- 110		COLE3-		0.0074		-	2500	60	60		60 20	1.100	0.800		19
75501	75530		COOLG1- 1		COOL3-		0.014	-		2400	38	38		38	1.100	0.992		5
75502	75530		COOLG2- 1		COOL3-		0.014	-	-	2400	38	38		38	1.100	0.992		5
75503	75510		COOLG3- 1		200L1-		0.005			1690	75	75		75	1.200	0.982		15
75504	75510		COOLG4- 1		200L1-		0.005	-	-	1690	75	75		75	1.200	0.982		15
75505	75520		COOLG5- 10		COOL2-		0.005	-	-	1766	70	70		70	1.187	0.971		15
75506	75520		COOLG6- 10		200L2-		0.005			1766	70	70		70	1.187	0.971		15
75507	75520		COOLG7- 10		200L2-		0.005	-	-	1766	70	70 75		70	1.187	0.971		15
75508	75510		COOLG8- 1		COOL1-		0.006	-	-	2000	75			75	1.200	0.982		15
75510	75530		COOL1- 11		COOL3-		0.008	-		2556	90	90		90	1.100	0.800		19
75510	75530		COOL1- 11		COOL3-		0.008	-		2556	90	90	-	90	1.100	0.800		19
75810	75830		CREA1- 110		CREA3-		0.011		-	2740	60	60		60 20	1.100	0.800		19
75810	75830	2	CREA1- 110	U.U C	CREA3-	33.00	0.0110	U	0.	2740	60	60	6	60	1.100	0.800		19

TRANSFORMER DATA - WINTER 2003/04 TABLE 6

NOL		СТ	NAI	ME			PARAME	TERS PU	ON 100MVA BA	SE	RATING IN	MVA		UPPER PU	LOWER PU	NUMBER OF
FROM T	O N	0	FR	ОМ		ТО	RESIS	TANCE	REACTANCE	WINTER	AUTUM	N SU	IMMER	OFF NOMINAL RATIO	OFF NOMINAL RATIO	TAP POSITIONS
76011	760)31	1	CREG1A	110.0	CREG3A	33.00	0.01	18	0.3200	75	75	7	5 1.150	0.850	19
76012	760)31	1	CREG1B	110.0	CREG3A	33.00	0.01	18	0.3200	75	75	7	5 1.150	0.850	19
76511	765	532	1	DONE1C	110.0	DONE3N	33.00	0.00	60	0.2424	90	90	9	0 1.150	0.850	19
76512	765	532	1	DONE1B	110.0	DONE3N	33.00	0.02	210	0.3670	60	60	6	0 1.150	0.850	19
76513	765	531	1	DONE1D	110.0	DONE3AS	33.00	0.02	210	0.3670	60	60	6	0 1.150	0.850	19
76514	765	531	1	DONE1A	110.0	DONE3AS	33.00	0.02	210	0.3670	60	60	6	0 1.150	0.850	19
77010	770	030	1	DRUM1-	110.0	DRUM3-	33.00	0.00	60	0.2424	90	90	9	0 1.100	0.800	19
77010	770	030	2	DRUM1-	110.0	DRUM3-	33.00	0.00	60	0.2424	90	90	9	0 1.100	0.800	19
77510	775	30	1	DUNG1-	110.0	DUNG3-	33.00	0.00	86	0.2582	90	90	9	0 1.100	0.800	19
77510	775	30	2	DUNG1-	110.0	DUNG3-	33.00	0.00	86	0.2582	90	90	9	0 1.100	0.800	19
78511	785	530	1	EDEN1A	110.0	EDEN3- 3	33.00	0.01	10	0.2740	45	45	4	5 1.100	0.800	19
78512	785	530	1	EDEN1B	110.0	EDEN3- 3	33.00	0.01	10	0.2740	45	45	4	5 1.100	0.800	19
79010	790)15	1	ENNK1_	110.0	ENNKPFA	110.0	0.00	20	0.0213	125	125	12	5 45.000	-45.000	9999
79010	790	030	1	ENNK1_	110.0	ENNK3- 3	33.00	0.01	20	0.2660	45	45	4	5 1.150	0.850	19
79010	790	030	2	ENNK1_	110.0	ENNK3- 3	33.00	0.01	20	0.2660	45	45	4	5 1.150	0.850	19
79010	790)30	3	ENNK1_	110.0	ENNK3- 3	33.00	0.00)74	0.2500	60	60	6	0 1.100	0.800	19
79015	790)16	1	ENNKPFA	110.0	ENNKPFB	110.0	0.00	000	0.0213	125	125	12	5 1.227	0.774	35
80011	800)30	1	FINY1A	110.0	FINY3- 33	3.00	0.00	076	0.2533	45	45	4	5 1.100	0.800	19
80012	800	030	1	FINY1B	110.0	FINY3- 33	3.00	0.00	076	0.2533	45	45	4	5 1.100	0.800	19
80511	805	530	1	GLEN1A	110.0	GLEN3- 3	33.00	0.01	11	0.3380	60	60	6	0 1.150	0.850	19
82001	820)20	1	KILRG1-	17.00	KILR2- 27	75.0	0.00	007	0.0488	340	340	34	0 1.224	0.890	19
82002	820)20	1	KILRG2-	17.00	KILR2- 27	75.0	0.00	007	0.0488	340	340	34	0 1.224	0.890	19

TRANSFORMER DATA - WINTER 2003/04 TABLE 6

NOL	DE	сст	NA	ME			PARAMETE	ERS PU C	ON 100MVA B	ASE	RATING IN	MVA		UPPER PU	LOWER PU	NUMBER OF
FROM 1	го	ΝΟ	FR	ОМ	ſ	то	RESISTA	ANCE	REACTANC	E WINTER	ΑυτυΜ	n su	IMMER	OFF NOMINAL RATIO	OFF NOMINAL RATIO	TAP POSITIONS
82511	8	2531	1	KNCK1A	110.0	KNCK3A	33.00	0.012	20	0.3370	60	60	6	0 1.150	0.850	19
82512	8	2532	1	KNCK1B	110.0	KNCK3B	33.00	0.012	20	0.3370	60	60	6	0 1.150	0.850	19
83011	8	3030	1	LARN1A	110.0	LARN3- 3	3.00	0.01	16	0.2780	45	45	4	5 1.100	0.900	15
83012	8	3030	1	LARN1B	110.0	LARN3- 3	3.00	0.01	16	0.2780	45	45	4	5 1.100	0.900	15
83510	8	3530	1	LIMA1-	110.0	LIMA3- 3	3.00	0.028	86	0.5551	24.5	24.5	24.	5 1.100	0.900	15
83510	8	3530	2	LIMA1-	110.0	LIMA3- 3	3.00	0.028	86	0.5510	22.5	22.5	22.	5 1.100	0.900	15
84011	8	4030	1	LISB1A	110.0	LISB3- 33	8.00	0.008	86	0.2550	90	90	9	0 1.100	0.800	19
84012	8	4030	1	LISB1B	110.0	LISB3- 33	8.00	0.008	86	0.2550	90	90	9	0 1.100	0.800	19
84411	8	4430	1	LSMR1A	110.0	LSMR3- 3	33.00	0.00	76	0.2533	45	45	4	5 1.100	0.800	19
84412	8	4430	1	LSMR1B	110.0	LSMR3- 3	33.00	0.00	76	0.2533	45	45	4	5 1.100	0.800	19
84511	8	4530	1	LOGE1A	110.0	LOGE3- 3	33.00	0.012	26	0.2800	45	45	4	5 1.100	0.800	19
84512	8	4530	1	LOGE1B	110.0	LOGE3- 3	33.00	0.012	26	0.2800	45	45	4	5 1.100	0.800	19
86511	8	6530	1	NEWY1A	110.0	NEWY3-	33.00	0.00	38	0.2419	90	90	9	0 1.100	0.800	19
86512	8	6530	1	NEWY1B	110.0	NEWY3-	33.00	0.00	38	0.2419	90	90	9	0 1.100	0.800	19
87011	8	7030	1	NORF1A	110.0	NORF3-	33.00	0.012	24	0.2778	45	45	4	5 1.500	0.510	159
87012	8	7030	1	NORF1B	110.0	NORF3-	33.00	0.012	24	0.2778	45	45	4	5 1.500	0.510	159
87510	8	7530	1	OMAH1-	110.0	OMAH3-	33.00	0.00	74	0.2500	60	60	6	0 1.100	0.800	19
87510	8	7530	2	OMAH1-	110.0	OMAH3-	33.00	0.00	74	0.2500	60	60	6	0 1.100	0.800	19
88011	8	8030	1	RATH1A	110.0	RATH3- 3	33.00	0.008	86	0.2554	90	90	9	0 1.100	0.800	19
88012	8	8030	1	RATH1B	110.0	RATH3- 3	33.00	0.008	86	0.2554	90	90	9	0 1.100	0.800	19
88511	8	8530	1	ROSE1A	110.0	ROSE3-	33.00	0.00	86	0.2554	90	90	9	0 1.100	0.800	19

TRANSFORMER DATA - WINTER 2003/04 TABLE 6

															1					
	NODE	сст	NA	ME	-		F	PARAMETERS	PU ON 100M	VA BASE		RATING IN I	NVA		υ	IPPER PU	L	OWER P	יט	NUMBER OF
FROM	то	NQ	FR	<i>рм</i>		70		RESISTANC	E REAC	ANCE	WINTER	AUTUM	ı sı	UMMER	OFF N	OMINAL RAT		IOMINAL	RATIO	TAP POSITIONS
88512	8853	30	1	ROSE1B	110.0	R	OSE3-	33.00	300.0	6	0.	2554		90	90	90	1.100		0.800	19
89510	895 ⁻	15	1	STRA1-	110.0	S	TRPFC	A 110.0	0.002	0	0.	0213		125	125	125	45.000		-45.000	9999
89510	8953	30	1	STRA1-	110.0	S	TRA3-	33.00	0.007	8	0.	2500		45	45	45	1.100		0.800	19
89510	8953	30	2	STRA1-	110.0	S	TRA3-	33.00	0.007	8	0.	2500		45	45	45	1.100		0.800	19
89515	895 ⁻	16	1	STRPFCA	A 110.0	S	TRPFC	B 110.0	0.000	0	0.	0213		125	125	125	1.227		0.774	35
90511	9053	30	1	WARN1A	110.0	N	VARN3-	33.00	0.012	0	0.	3000		45	45	45	1.100		0.800	19
90512	9053	30	1	WARN1B	110.0	N	VARN3-	33.00	0.012	0	0.	3000		45	45	45	1.100		0.800	19
91001	9103	31	1	WESTG1	11.80	V	VEST3A	33.00	0.014	4	0.	2760		36	36	36	1.100		0.992	5
91002	9103	31	1	WESTG2	11.80	V	VEST3A	33.00	0.014	4	0.	2760		36	36	36	1.100		0.992	5
91003	9103	31	1	WESTG3	11.80	V	VEST3A	33.00	0.008	0	0.	1527		72	72	72	1.100		0.992	5
91004	9103	31	1	WESTG4	11.80	V	VEST3A	33.00	0.008	0	0.	1527		72	72	72	1.100		0.992	5
91005	9103	32	1	WESTG5	11.80	V	VEST3B	33.00	0.008	0	0.	1527		72	72	72	1.100		0.992	5
91011	9103	31	1	WEST1A	110.0	N	VEST3A	33.00	0.007	4	0.	1670		75	75	75	1.150		0.850	19
91012	9103	32	1	WEST1B	110.0	N	VEST3B	33.00	0.007	4	0.	1670		75	75	75	1.150		0.850	19

Note - The above ratings are nominal. For transformers less than 25 years old we allow overload ratings depending on the season of the year (ambient temperature).

These are taken into account in our analysis in Table 2.

TRANSFORMER DATA CHANGES- WINTER 2003/04 - 2009/10 TABLE 7

2003/04 B.S.P TRANSFORMERS ADDED

N	ODE	ССТ	NAME		PARAMETERS PU ON 100MVA BASE			RATING IN MVA		UPPER PU	LOWER PU	NUMBER OF
FROM	то	NO	FROM	ТО	RESISTANCE	REACTANCE	WINTER	AUTUMN	SUMMER	OFF NOMINAL RATIO	OFF NOMINAL RATIC	TAP POSITIONS
75810	75830	1	CREA1- 110.0	CREA3- 33.00	0.011	0.274	60	60	60	1.100	0.800	19
75810	75830	2	CREA1- 110.0	CREA3- 33.00	0.011	0.274	60	60	60	1.100	0.800	19

2004/05 B.S.P TRANSFORMERS ADDED

^	IODE	ССТ	NAME		PARAMETERS PU ON 100MVA BASE			RATING IN MVA		UPPER PU	LOWER PU	NUMBER OF
FROM	то	NO	FROM	ТО	RESISTANCE	REACTANCE	WINTER	AUTUMN	SUMMER	OFF NOMINAL RATIO	OFF NOMINAL RATIO	TAP POSITIONS
8631	1 86330	1	NARD1A 110.0	NARD3- 33.00	0.01	0.25	60	60	60	1.100	0.800	19
8631	2 86330	1	NARD1B 110.0	NARD3- 33.00	0.01	0.25	60	60	60	1.100	0.800	19

2005/06 GENERATOR TRANSFORMERS ADDED

NC	DE	сст	NAME		PARAMETERS PU ON 100MVA BASE			RATING IN MVA		UPPER PU	LOWER PU	NUMBER OF
FROM	то	NO	FROM	то	RESISTANCE	REACTANCE	WINTER	AUTUMN	SUMMER	OFF NOMINAL RATIO	OFF NOMINAL RATIO	TAP POSITIONS
75510	75515	1	COOL1- 110.0	COOLST- 11.80	0.0026	0.0634	200	200	200	1.200	0.982	15
75516	75520	1	COOLGT- 16.00	COOL2- 275.0	0.0015	0.0432	300	300	300	1.187	0.971	15

275/110kV INTERBUS TRANSFORMER & CAPACITANCE DATA - WINTER 2003/04

TABLE 8

							1						r					1
NODE		сст				PARAMETERS PU ON 100MVA BASE					RATI	ING IN	MVA	UPPER PU - OFF	LOWER PU - OFF	NO. of		
FROM (W1)	TO (W2)	LAST (W3)	NO	FROM (W1)	TO (W2)	LAST (W3)	(W 1-2) R	(W 1-2) X	(W 2-3) R	(W 2-3) X	(W 3-1) R	(W 3-1) X	W1	W2	W3	NOMINAL RATIO	NOMINAL RATIO	TAP POS.
70510	70520	70561	1	BAFD1- 110.0	BAFD2- 275.0	BAFD6P 22.00	0.0018	0.0641	0.0018	0.2092	0.0000	0.1325	240	240	30	1.15	0.85	19
70510	70520	70562	1	BAFD1- 110.0	BAFD2- 275.0	BAFD6Q 22.00	0.0018	0.0641	0.0018	0.2059	0.0000	0.1280	240	240	30	1.15	0.85	19
74511	74520	74561	1	CAST1A 110.0	CAST2- 275.0	CAST6P 22.00	0.0018	0.0641	0.0018	0.2092	0.0000	0.1325	240	240	30	1.15	0.85	19
74511	74520	74562	1	CAST1A 110.0	CAST2- 275.0	CAST6Q 22.00	0.0018	0.0641	0.0018	0.2092	0.0000	0.1325	240	240	30	1.15	0.85	19
74512	74520	74563	1	CAST1B 110.0	CAST2- 275.0	CAST6R 22.00	0.0018	0.0656	0.0018	0.2375	0.0000	0.1593	240	240	30	1.15	0.85	19
75510	75520	75561	1	COOL1- 110.0	COOL2- 275.0	COOL6P 22.00	0.0018	0.0609	0.0018	0.1273	0.0000	0.0570	240	240	30	1.15	0.85	19
75510	75520	75562	1	COOL1- 110.0	COOL2- 275.0	COOL6Q 22.00	0.0018	0.0609	0.0018	0.1273	0.0000	0.0570	240	240	30	1.15	0.85	19
81010	81020	81061	1	HANA1A 110.0	HANA2A 275.0	HANA6P 22.00	0.0018	0.0591	0.0018	0.1261	0.0000	0.0560	240	240	30	1.15	0.85	19
81010	81020	81062	1	HANA1A 110.0	HANA2A 275.0	HANA6Q 22.00	0.0018	0.0591	0.0018	0.1261	0.0000	0.0560	240	240	30	1.15	0.85	19
81510	81520	81561	1	KELS1- 110.0	KELS2- 275.0	KELS6P 22.00	0.0018	0.0609	0.0018	0.1273	0.0000	0.0570	240	240	30	1.15	0.85	19
81510	81520	81562	1	KELS1- 110.0	KELS2- 275.0	KELS6Q 22.00	0.0018	0.0607	0.0018	0.1317	0.0000	0.0570	240	240	30	1.15	0.85	19
90011	90020	90061	1	TAND1A 110.0	TAND2- 275.0	TAND6P 22.00	0.0018	0.0641	0.0018	0.2092	0.0000	0.1325	240	240	30	1.15	0.85	19
90011	90020	90062	1	TAND1A 110.0	TAND2- 275.0	TAND6Q 22.00	0.0018	0.0641	0.0018	0.2092	0.0000	0.1325	240	240	30	1.15	0.85	19
90012	90020	90063	1	TAND1B 110.0	TAND2- 275.0	TAND6R 22.00	0.0018	0.0656	0.0018	0.2375	0.0000	0.1575	240	240	30	1.15	0.85	19

2005/06 INTERBUS TRANSFORMER ADDED

NODE CCT NAME			PARAMETERS PU ON 100MVA BASE					RATING IN MVA			UPPER PU - OFF	LOWER PU - OFF	NO. of					
FROM	то	LAST	NO	FROM	то	LAST	(W 1-2) R	(W 1-2) X	(W 2-3) R	(W 2-3) X	(W 3-1) R	(W 3-1) X	W1	W2	W3	NOMINAL RATIO	NOMINAL RATIO	TAP POS.
90310	90320	90361	1	TYRN1- 110.0	TYRN2- 275.0	TYRN6P 22.00	0.0046	0.1252	0.0046	0.4670	0.0000	0.3002	120	120	30	1.15	0.85	19

2008/09 INTERBUS TRANSFORMER ADDED

NODE CCT NAME			PARAMETERS PU ON 100MVA BASE					RATING IN MVA			UPPER PU - OFF	LOWER PU - OFF	NO. of					
FROM	то	LAST	NO	FROM	то	LAST	(W 1-2) R	(W 1-2) X	(W 2-3) R	(W 2-3) X	(W 3-1) R	(W 3-1) X	W1	W2	W3	NOMINAL RATIO	NOMINAL RATIO	TAP POS.
9031	0 90320	90362	2 1	TYRN1- 110.0	TYRN2- 275.0	TYRN6Q 22.00	0.0023	0.0626	0.0023	0.2335	0.0000	0.1501	240	240	30	1.15	0.85	19

BUS	NODE	NAME	VOLTAGE	LOAD	NOTES
NUMBER	NAME		(kV)	(MVAr)	
74571	CAST7P	CASTLEREAGH	22	25	NOTE 1
74572	CAST7Q		22	25	NOTE 1
74573	CAST7R		22	25	NOTE 1
75514	COOL1C	COOLKEERAGH	110	40	NOTE 1
79030	ENNK3-		33	30	NOTE 1
86220	MOYL2-	MOYLE	275	236	NOTE 2
90071	TAND7P	TANDRAGEE	22	25	NOTE 1
90073	TAND7R		22	25	NOTE 1

CAPACITANCE WINTER 2003/04

NOTE 1 - Capacitance in switched in as necessary to ensure load flow convergence

NOTE 2 - Capacitance varies with transfer (from/to Scotland), 0 - 236MVAr in blocks of 59MVAr

NOTE 3 - The Interbus Transformers have been remodelled since our last statement

NO]		ND ELECTRICITY TR		STEM
		VEN YEAR STATEMEN ar Ratings and Fault Levels		Table 9
	Stittenget	(With ESB connection)		
Location	Voltage	Switchgear Fault rating		ed Fault Level MVA)
	(kV)	(MVA)	three phase	single phase to earth
	275	0500 (2	0400	0754
Ballylumford	275	9500 note 2	8186	9751
Castlereagh	275	9500	6550	7356
Coolkeeragh	275	9500	5389	6021
Hannahstown	275	15000	6549	7350
Kells Kilroot	275	9500	7418	8102
	275	15000	7233	7896
Magherafelt	275	9500	7363	7546
Moyle	275	15000	7580	9078
Tandragee	275	9500	7462	8080
Tyrone	275	15000	5979	5663
Antrim	110	3500	1754	1866
Ballylumford	110	4200/5000 note 1&2	4222	5131
Ballymena	110	3500	1586	1686
Banbridge	110	3500	1295	1247
Ballyvallagh	110	3500	2817	2831
Ballynahinch	110	3500	1061	1028
Belfast Central	110	6000	2715	3223
Carnmoney	110	3500	1779	1639
Castlereagh	110	6000	3394	4378
Coleraine	110	7600	1275	1470
Coolkeeragh	110	3500 note 4	3637	4709
Creagh	110	6000	1177	921
Cregagh	110	3500 note 3	3053	3777
Donegall North	110	6000	2659	3321
Donegall South	110	-	2055	2194
Drumnakelly	110	7600	3348	3844
Dungannon	110	3500	2406	2600
Eden	110	3500	2010	1930
Enniskillen	110	3500	1156	1441
Finaghy	110	6000	2754	3514
Glengormley	110	3500	1000	964
Hannahstown	110	6000	2997	3935
Kells	110	5000	3374	4298
Knock	110	3500	2869	2944
Larne	110	3500	1728	1625
Limavady	110	3500	1176	1214
Lisaghmore	110	3500	1757	1696
Lisburn	110	3500	1899	1988
Loguestown	110	3500	942	1027
Newry	110	3500	1021	1026
Newtownards	110	6000	1189	1169
Norfil	110	3500	1727	1835
Omagh	110	7600	1847	2035
Rathgael	110	3500	1141	1120
Rosebank	110	3500 note 3	3191	4033
Strabane	110	3500	2391	2662
Tandragee	110	6000	3736	4602
Tyrone	110	6000	1886	1937
Waringstown	110	3500	1521	1428
West	110	3500	2302	2396

The above ratings are based on the lowest rated switchgear although NIE is carrying out a review of all substat equipment capacities.

note1 - 3phase fault rating - 4200MVA & 1 phase fault rating 5000MVA.

note 2 - Fault current decrement studies indicate the switchgear will not be over stressed at switchgear operativ note 3 - It is planned to change isolators.

note 4 - NIE is carrying out work to increase the fault rating at this substation.

_	Description	To Existing Load	To Republic of Ireland	To Scotland
From Ballylumford	a) Incremental Transfer b) Problem Outage	0MW Bfd-Han + Bfd-Moyle	0MW Bfd-Han + Bfd-Moyle	400MW
	c) Network Problem	Bfd-Kells + Bfd-Mag O/L Bfd-Kells O/L Bfd-Han	Bid-Kells + Bid-Mag O/L Bid-Kells O/L Bid-Han	
	d) Work Required	Also Voltage Reconductor + SVC	Also Voltage Reconductor + SVC	
	e) Resulting Transfer	400MW	400MW	
Castlereagh	a) Incremental Transfer b) Problem Outage	400MW	400MW	400MW
	c) Network Problem			
	d) Work Required		SVC (see note p.22)	
	e) Resulting Transfer			
Coolkeeragh	a) Incremental Transfer b) Problem Outage	0MW Cool-Mag D/C	0MW Cool-Mag D/C	0MW Cool-Mag D/C
	c) Network Problem	110kV O/L in NW	110kV O/L in NW	110kV O/L in NW
	d) Work Required	New 275kV Cool-Mag + SVC	New 275kV Cool-Mag + SVC	New 275kV Cool-Mag + SVC
	e) Resulting Transfer	(See Note p.22) 400MW	(See Note p.22) 400MW	(See Note p.22) 400MW
Kells	a) Incremental Transfer b) Problem Outage	400MW	400MW	400MW
	c) Network Problem			
	d) Work Required		SVC (See Note p.22)	
	e) Resulting Transfer			
<u>Kilroot</u>	a) Incremental Transfer b) Problem Outage	400MW	400MW	400MW
	c) Network Problem			
	d) Work Required		SVC (See Note p.22)	
	e) Resulting Transfer	(00) EV		
<u>Magherafelt</u>	a) Incremental Transfer b) Problem Outage	400MW	400MW	0MW 2 IBTx at Han
	c) Network Problem			O/L Lisburn-Tandragee
	d) Work Required		SVC (See Note p.22)	Reconductor to UPAS
	e) Resulting Transfer			400MW
Moyle	a) Incremental Transfer b) Problem Outage	0MW Bfd-Han + Bfd-Moyle	0MW Bfd-Han + Bfd-Moyle	400MW
	c) Network Problem	Bfd-Kells + Bfd-Mag O/L Bfd-Kells	Bfd-Kells + Bfd-Mag O/L Bfd-Kells	
	d) Work Required	O/L Bfd-Han Also Voltage Reconductor + SVC	O/L Bfd-Han Also Voltage Reconductor + SVC	
	-) Deculting T		(See Note p.22)	
Tyrone/	e) Resulting Transfera) Incremental Transfer	400MW 400MW	400MW 0MW	0MW
Drumkee	b) Problem Outage		Tyr-Mag + Tyr-Tan	2 IBTx at Han
	c) Network Problem		O/L Tyr-Drum	O/L Lisburn-Tandragee
	d) Work Required		Reconductor + SVC (See Note p.22)	Reconductor to UPAS
Tandragee	e) Resulting Transfera) Incremental Transfer	400MW	400MW 400MW	400MW 0MW
<u>1 andragee</u>	a) Incremental Transfer b) Problem Outage	400MW	400M W	2 IBTx at Han
	c) Network Problem			O/L Lisburn-Tandragee
	d) Work Required		SVC (See Note p.22)	Reconductor to UPAS
	e) Resulting Transfer			400MW